当X大于1,求f(x)=[lnx(x+1)]/(x-1)的取值范围,f(x)=[(lnx)(x+1)]/(x-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:16:16
当X大于1,求f(x)=[lnx(x+1)]/(x-1)的取值范围,f(x)=[(lnx)(x+1)]/(x-1)
xT]OA+ M'CL V@PPAHK ;3_j5}l{9w% 5huh/ޗoRؿ%~V2.?HA.H>dҢo?^O.J^ 0ͻ*CڈRo.߃^I *]sM̶Q Wia{+ wIН/*q4q;_y\ҋ&^+[w"{FQSO$S7]E |h|j'dxI_i+,L ]/Յ^ \lBZ"!7[SVX|RL, KK]ST vCv$:>:JL".ZɟtWǡ|!_YSwqG9*~;ǻC2XcHa`&. [ޱI]%=6ap4V>Gܻ>!}3c Z߅+cn:tL] 85^u,s|Fp F&sne-RzU(xdQ~GO=ðb# DoZ*ˬVK2*␞NȠ!r*XDhihyao:

当X大于1,求f(x)=[lnx(x+1)]/(x-1)的取值范围,f(x)=[(lnx)(x+1)]/(x-1)
当X大于1,求f(x)=[lnx(x+1)]/(x-1)的取值范围,
f(x)=[(lnx)(x+1)]/(x-1)

当X大于1,求f(x)=[lnx(x+1)]/(x-1)的取值范围,f(x)=[(lnx)(x+1)]/(x-1)
f(x)=[(lnx)(x+1)]/(x-1) 首先a大于0小于1的时候肯定不成立讨论当a大于1的时候 (x-1)^2小于lnx除以lna 即lna小于lnx除以(x-1)2恒成立

f(x)=[lnx(x+1)]/(x-1)
=lne^(x-1) [x(x+1)]
X>1时,lne^(x-1) [x(x+1)]>1
故:f(x)=[lnx(x+1)]/(x-1)的取值范围:>1??f(x)=[lnx(x+1)]/(x-1) =lne^(x-1) [x(x+1)]???随便代个数就错了f(x)=[lnx(x+1)]/(x-1) ...

全部展开

f(x)=[lnx(x+1)]/(x-1)
=lne^(x-1) [x(x+1)]
X>1时,lne^(x-1) [x(x+1)]>1
故:f(x)=[lnx(x+1)]/(x-1)的取值范围:>1

收起

我认为应该是这样:
原式=[lnx/(x-1)]+[ln(x+1)/(x-1)]证单调性,这个函数当x>1时单增,因为x>1,所以取值范围为(2,+∞)是单增没错,但最小值2是怎么确定的请问您现在上几年级? 由于我现在上高一,没有学微积分,解决这一问题有些困难,不过可以代入一些约等于2的数,你会发现,随着代入的数越来越接近1,函数值会越接近2,此外,使用几何画板也是解决这类问题的一个好方...

全部展开

我认为应该是这样:
原式=[lnx/(x-1)]+[ln(x+1)/(x-1)]证单调性,这个函数当x>1时单增,因为x>1,所以取值范围为(2,+∞)

收起

首先a大于0小于1的时候肯定不成立讨论当a大于1的时候 (x-1)^2小于lnx除以lna 即lna小于lnx除以(x-1)2恒成立对lnx除以(x-1)2求一下导数等于1-(1