若f(2^x)=log2底X,则f(16)=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:42:39
若f(2^x)=log2底X,则f(16)=?
xRnPJHȑ,XQ@k$Ha6"KPyn&چU NǏ_kg_`l& ̙9sFUYP3ҋWpOxzq2WXMuNl(ޝZُ]+KO<R']DÏ4t}8iom\jeݖ2xTpbǖG-Jn$_V%fȳ5pqSmKC6?{fpӨqhh&'M

若f(2^x)=log2底X,则f(16)=?
若f(2^x)=log2底X,则f(16)=?

若f(2^x)=log2底X,则f(16)=?
【解】:令2^x=t,两边取以2为底的对数可得:log2(2^x)=log2(t);就是x=log2(t)【这里log2(2^x)=x】
∴f(2^x)=f(t)=log2(x)=log2[log2(t)]
也就是:f(t)=log2[log2(t)]
为了习惯,再将t换位x,(任何字母都可以其实,我们总是习惯把变量符号写作x,仅此而已)
∴f(x)=log2[log2(x)]
f(16)=log2[log2(16)]=log2[log2(2^4)]=log2(4)=log2(2²)=2
【注】:log2(x)中,log后的2表示该对数的底数,括号中的部分表示其真数.过程中多次用到对数恒等式:loga(a^N)=N

16=2^4,所以f(16)=log2底4=2

16=2^4

所以f(16)=f(2^4)=log 4=2
(2那个底数,不好打上去,我省了,你自己补)