直线2x-y-10=0,与双曲线x^2/20-y^2/5=1交于两点P,Q,求以线段PQ为直径的圆的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:00:52
直线2x-y-10=0,与双曲线x^2/20-y^2/5=1交于两点P,Q,求以线段PQ为直径的圆的方程
xUnF~_r6nZőxxHm*jo

直线2x-y-10=0,与双曲线x^2/20-y^2/5=1交于两点P,Q,求以线段PQ为直径的圆的方程
直线2x-y-10=0,与双曲线x^2/20-y^2/5=1交于两点P,Q,求以线段PQ为直径的圆的方程

直线2x-y-10=0,与双曲线x^2/20-y^2/5=1交于两点P,Q,求以线段PQ为直径的圆的方程
设P(x1,y1),Q(x2,y2),而A(x,y)在以PQ为直径的圆上.
因为直径所对的圆周角等于90°,即PA⊥QA,用斜率的语言表示就是
(y-y1)/(x-x1) * (y-y2)/(x-x2) = -1,当然用斜率表示时A不能取为P、Q两点,应该改成
(y-y1)*(y-y2) + (x-x1) *(x-x2) = 0
另一方面,因为P、Q是直线与双曲线的交点,他们的坐标同时满足直线方程和双曲线方程.联立两个方程,如果消去x可以得到y1与y2的关系,如果消去y可以得到x1与x2的关系(初中的韦达定理):
消去x后,得 3y^2 - 4y - 4 = 0 ,即 y1+y2 = 4/3 ,y1*y2 = -4/3
消去y后,得 3x^2 + 32x + 84 = 0 ,即 x1+x2 = -32/3 ,x1*x2 = 84/3
于是,以PQ为直径的圆的方程为
x^2 + y^2 + 32/3 x - 4/3 y + 80/3 = 0

好难的题啊
把直线方程代入双曲线
得3x^2-30x+76=0
x1+x2=10
x1*x2=76/3
y1+y2=(2x1-10)+(2x2-10)=0
所以圆心为(5,0)
再算直径(弦长)
根号下(1+k^2) *(x1-x2)的绝对值
(x1-x2)^2 = (x1+x2)^2-4*x1*x2
……
...

全部展开

好难的题啊
把直线方程代入双曲线
得3x^2-30x+76=0
x1+x2=10
x1*x2=76/3
y1+y2=(2x1-10)+(2x2-10)=0
所以圆心为(5,0)
再算直径(弦长)
根号下(1+k^2) *(x1-x2)的绝对值
(x1-x2)^2 = (x1+x2)^2-4*x1*x2
……
哎呀,我的计算不过关,
我的结果半径为三分之一倍的根号485
方程自己化简得了,我是没辙了

收起

(1)求线段AP中点的轨迹方程 AP中点(x,y) xP=2x-2,yP=2y x^2+y^2x^2+y^2-x-y-1=0 PQ中点的轨迹方程圆: (x-0.5)^2+(y-0.5)^