[(x+y)^2+z^2+2yz]dS曲面积分,球面为x^2+y^2+z^2=2x+2z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:42:20
xJ0_e((i"m7.E%MIԙiŶ[A\7n\
Q=ޏxSa0Ƿ6>?_yā/n>KٶE.ITEd`mM*u9Ӳ7vJS|!-
Efh$R4EZr*"tsb0D@sPF,4],ܮaifRElCPh\p;
[(x+y)^2+z^2+2yz]dS曲面积分,球面为x^2+y^2+z^2=2x+2z
[(x+y)^2+z^2+2yz]dS曲面积分,球面为x^2+y^2+z^2=2x+2z
[(x+y)^2+z^2+2yz]dS曲面积分,球面为x^2+y^2+z^2=2x+2z
[(x+y)^2+z^2+2yz]dS曲面积分,球面为x^2+y^2+z^2=2x+2z
因式分解 (x+y+z)^2+yz(y+z)+xyz
(2X+Z-Y)/(X^2-XY+XZ-YZ)-(Y-Z)/(X^2-XY-XZ+YZ)
化简(2x-y-z/x^2-xy-xz+yz)+(2y-x-z/y^2-xy-yz+xz)+(2x-x-y/z^2-xz-yz+xy)
化简x^2-yz/[x^2-(y+z)x+yz]+y^2-zx/[y^2-(z+x)y+zx]+z^2-xy/[z^2-(x+y)z+xy]
求(2X+Z-Y)/(X^2-XY+XZ-YZ)-(2X+Y+Z)/(X^2+XY+XZ+YZ)
高数题设曲面∑为柱面x^2+y^2=1介于平面z=-2与z=2之间的部分,则曲面积分∫∫(∑)(x^2+yz+y^2)dS= ?
因式分解x^2-y^2-z^2+2yz
x^2-y^2-z^2-2yz因式分解如题快
分解因式:x^2-y^2+2yz-z^2
x^2-y^2-z^2-2yz
x^2-y^2-z+2yz 因式分解
因式分解:x²-y²-z²+2yz
因式分解4x²-y²-2yz+z²
因式分解x²-y²-z²+2yz
因式分解x²-y²-z²+2yz
因式分解练习题,x²-y²-z²-2yz
分解因式2yz-y²-z²+x²