概率(正态分布)设二维随机变量(X,Y)服从二维正态,则随机变量a=X+Y与b=X-Y独立的充分必要条件为:DX=DY如何证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:51:17
概率(正态分布)设二维随机变量(X,Y)服从二维正态,则随机变量a=X+Y与b=X-Y独立的充分必要条件为:DX=DY如何证明
x){y_=.~{:_dW[^6g/5"t"5}" Ѥc&D';l#t#wy Xl'=ٱ%%鲦'{XlFMR>NW%iv65Ȁ($*&(de&+d$(VV$3S2RR RD^BfZBr~TN^bnjN%LN6X [(Hļyũ@#s*\4"4m!* JHM<;hڀ9zH/b

概率(正态分布)设二维随机变量(X,Y)服从二维正态,则随机变量a=X+Y与b=X-Y独立的充分必要条件为:DX=DY如何证明
概率(正态分布)
设二维随机变量(X,Y)服从二维正态,则随机变量a=X+Y与b=X-Y独立的充分必要条件为:DX=DY如何证明

概率(正态分布)设二维随机变量(X,Y)服从二维正态,则随机变量a=X+Y与b=X-Y独立的充分必要条件为:DX=DY如何证明
X,Y are normal distributed,so that X+Y,X-Y are parewise independent iff cov(X+Y,X-Y)=0,namely
cov(x,x)+cov(X,Y)-cov(X,Y)-cov(Y,Y)=0,and consequently D(X)=cov(X,X)=cov(Y,Y)=D(Y)

.

概率(正态分布)设二维随机变量(X,Y)服从二维正态,则随机变量a=X+Y与b=X-Y独立的充分必要条件为:DX=DY如何证明 设随机变量X和Y都服从正态分布,则(X,Y)一定服从二维正态分布吗? 设二维随机变量(x,y)服从二维正态分布,其概率密度1/50π证明X与Y相互独立详见图片 求X,Y是否独立` 设二维随机变量(X,Y )服从二维正态分布N(0,0,1,1,0)求P(X+Y0) 设二维随机变量(X,Y)服从二维正态分布,求(X,Y)的联合概率密度函数f(x,y)设二维随机变量(X,Y)服从二维正态分布,且E(X)=0,E(Y)=0,D(X)=16,D(Y)=25,Cov(X,Y)=12,求(X,Y)的联合概率密度函数f(x,y) 证明:设二维随机变量(X,Y)服从二维正态分布N(0,0,1,1,p),则X-Y服从正态分布N(0,2(1-p)). 设二维随机变量(X,Y)服从二维正态分布,且µ1=0,μ2=0,σ1=1,σ2=1,求(X,Y)关于X,Y的边缘概率 设二维随机变量(X,Y)的联合概率密度函数 设二维随机变量(X,Y)的概率密度为f(x,y)=1 0 设二维随机变量(X,Y)的概率密度为f(x,y)=1(0 二维正态随机变量(X,Y)的条件概率密度是正态分布吗? 设随机变量(x,y)服从二维正态分布,概率密度为f(x,y)=(1/2pi)*exp[-1/2*(x^2+y^2)],求E(x^2+y^2) 设随机变量(x,y)服从二维正态分布,概率密度为f(x,y)=(1/2pi)*exp[-1/2*(x^2+y^2)],求E(x^2+y^2) 设二维随机变量(X,Y)的联合密度函数为.求概率等.就是这道题, 设二维随机变量(x,y)的概率密度函数为下图,则常数A等于? 求二维随机变量的期望,设(X,Y)的概率密度为0.5 0 设二维连续型随机变量(X,Y)的概率密度当0 设二维随机变量(X,Y)的概率密度为如下图