求解一矩阵证明题..证明不存在三阶复矩阵A,使得AA=B,其中B为三阶矩阵,方阵的右上方三个元素不为0,且其他元素为0.即i>=j时b(ij)=0,i

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:50:51
求解一矩阵证明题..证明不存在三阶复矩阵A,使得AA=B,其中B为三阶矩阵,方阵的右上方三个元素不为0,且其他元素为0.即i>=j时b(ij)=0,i
xSMo@+*\BKi}+^sB"TC9]%@pI DDl0俴;kY/TH8w{ofcܫTVԒeK ZpvMMkW@"#̛ cjjNJ@$ְpqy(9X5<XO2TFD|5[N(2l"Y 5:R_";I*Wd6fhJ*M?ҳ2V]_-#$#xZw\h=!_ ҙc3XCwa]9!T ܄v^b'TZ]x,m<^TL&3|s9M&Ѥ׻/݋2hM,bdUCF}:) 8\Y `Y`]Ƃ pW*4t'+-Xѩ_zԢHPs"V5\ flİAsOC%΅G !EwHs5]́v#AsOx>9HFᐄ0l}6qI &_d/7 ZVUEqKbtw{]4QäMtTbS2

求解一矩阵证明题..证明不存在三阶复矩阵A,使得AA=B,其中B为三阶矩阵,方阵的右上方三个元素不为0,且其他元素为0.即i>=j时b(ij)=0,i
求解一矩阵证明题..
证明不存在三阶复矩阵A,使得AA=B,其中B为三阶矩阵,方阵的右上方三个元素不为0,且其他元素为0.即i>=j时b(ij)=0,i

求解一矩阵证明题..证明不存在三阶复矩阵A,使得AA=B,其中B为三阶矩阵,方阵的右上方三个元素不为0,且其他元素为0.即i>=j时b(ij)=0,i
反证法,若存在A,有A^2=B.注意到B^2≠0,但B^3=0.从而有A^4≠0,但A^6=0.但这是不可能的.因为A^6为0矩阵说明X^6是A的零化多项式,又由于A是3阶的,故X^3也必定是A的零化多项式,也即A^3=0,从而A^4一定为0,矛盾.

证明In-AB的行列式不等于零就可以了证明如下 题目写的不大清楚,In-BA 是什么意思?证明时可用(AB)的逆矩阵等于 B的逆*A的逆或者利用反证法

此题甚易!
首先B为幂零矩阵,所以A也是幂零矩阵。则其特征值均为0.
若A~J3(0),则A²~diag(J1(0),J2(0)).
若A~diag(J1(0),J2(0)),则A²~O.
而B~J3(0),矛盾!
这里J3(0)是三阶特征值为0的Jordan块,~是相似之义。