已知函数f(x)=x^2+ax-lnx(a∈R),令g(x)=f(x)-x^2,是否存在a当x∈(0,e]时,最小值为3,求a值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 21:52:45
已知函数f(x)=x^2+ax-lnx(a∈R),令g(x)=f(x)-x^2,是否存在a当x∈(0,e]时,最小值为3,求a值
xJ@_%&81vC70B)lL/bP7MqSl]hlӗsv㺻3b~7/%=_ɾ w aa}gَ|x !\FoGtܧ+;ufp=~V$trCT6`;67̊}o$Fչ%/LCB-\\tDfٵ  5R?"_MmKMb68Sr~=R6(VTpt xJB^uVqusY߉fe1 BӁ| +l

已知函数f(x)=x^2+ax-lnx(a∈R),令g(x)=f(x)-x^2,是否存在a当x∈(0,e]时,最小值为3,求a值
已知函数f(x)=x^2+ax-lnx(a∈R),令g(x)=f(x)-x^2,是否存在a当x∈(0,e]时,最小值为3,求a值

已知函数f(x)=x^2+ax-lnx(a∈R),令g(x)=f(x)-x^2,是否存在a当x∈(0,e]时,最小值为3,求a值
g(x)=ax-lnx
g'(x)=a-1/x,x=1/a
g''(1/a)=a^2>0 (a不等于0,a=0时,g(x)=-lnx,不会有最小值3)
所以 x=1/a为极小值点
如果最小值存在,min{g(x)}=min{g(1/a),g(e)} 且 1/a∈(0,e]
1)若min{g(x)}=g(e)时,g(e)=ae-1=3,所以a=4/e,此时,g(1/a)=ln43.
综上,如果最小值存在,则a=e^2