函数f(x)=-x(x-a)^2,x∈R,其中a∈R,当a〉3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k^2-cos^2 x)...函数f(x)=-x(x-a)^2,x∈R,其中a∈R,当a〉3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k^2-cos^2 x)对任意x∈R恒

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 20:54:24
函数f(x)=-x(x-a)^2,x∈R,其中a∈R,当a〉3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k^2-cos^2 x)...函数f(x)=-x(x-a)^2,x∈R,其中a∈R,当a〉3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k^2-cos^2 x)对任意x∈R恒
xS]O`+$Ko-Kl-?b&̼eQv"ʘ[dY\%Zia틎efW9s>,ln>iTHZ[s[mk<h jd)ǻ>7/,.:Qm䓺2{- #%TsM2Aa_y.=%~ZVu>m@#VT8@vCL:CpݤNT/XZ6C,h?2΂s1Zo{VW}1%AK"VSԽxɯF6jf5TK? PIi鵕+Vs5&ޔoKDے]7|I%꾏}v ÙSa+w;#*(UgP[skb%s2°:)x*! ϣҿ6x'y߬O<˘x*dO-<Зv`xf5q$f8'^s/60jUŀaaZ NHL:JIp$:yfۙ)Lp/k!WbtfMx-

函数f(x)=-x(x-a)^2,x∈R,其中a∈R,当a〉3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k^2-cos^2 x)...函数f(x)=-x(x-a)^2,x∈R,其中a∈R,当a〉3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k^2-cos^2 x)对任意x∈R恒
函数f(x)=-x(x-a)^2,x∈R,其中a∈R,当a〉3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k^2-cos^2 x)...
函数f(x)=-x(x-a)^2,x∈R,其中a∈R,当a〉3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k^2-cos^2 x)对任意x∈R恒成立.

函数f(x)=-x(x-a)^2,x∈R,其中a∈R,当a〉3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k^2-cos^2 x)...函数f(x)=-x(x-a)^2,x∈R,其中a∈R,当a〉3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k^2-cos^2 x)对任意x∈R恒
对f求导,知道在x3,因此x<1时f单调下降
因此只要能找到k使得k-cosx<=k^2-cos^2x<=1就可以了.因为后面一个必然成立,只需k-k^2<=min(cosx-cos^2x)=-2即可,k=-1即可

德尔塔d>1,k-cosx≤1,k2-cos2x≤1.又f(x)在(-∞,1]上递减,要使不等式成立只要k-cosx≤k2-cos2x即cos2x-cosx≤k2-k①,设g(x)=cos2x-cosx=(cosx-d)2-d,则g(x)max=2。要使①式恒成立,等价于g(x)max≤k2-k.得k有交集

证:f’(x)=-3x²+4ax-a²=(-3x+a)(x-a)
所以 a/3<x<a时候 f’(x)>0函数为↑
x<a/3或x>a时候 为↓函数
由a>3得 x<3/3=1的时候函数必为减函数

字数限制,请看: