已知a,b∈R+,a+b=1.求y=ab+1/ab的最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:21:39
已知a,b∈R+,a+b=1.求y=ab+1/ab的最小值.
xRN@֎!|0pin]EVW F6>"s[ o27ܙs4WC1eq‡e0Qr|]^uOT}{Y?68 ƃR5Ml&ճ:n1nᆉŜbpQX*jX J[|\yαB*P[vn.%/MORSDVrQ@!|w$¿BCg*3JET:x\FVStib:j[V_9aPt1. N@AA!eD&^waF&n5kC7 l-?;rr҆2r0n4Ţ{+'{L|O2TI

已知a,b∈R+,a+b=1.求y=ab+1/ab的最小值.
已知a,b∈R+,a+b=1.求y=ab+1/ab的最小值.

已知a,b∈R+,a+b=1.求y=ab+1/ab的最小值.
法一:
a,b∈R+,a+b=1≥2√ab→0≤ab≤1/4
设ab=x,则y=ab+1/ab=x+1/x.
对于函数f(x)=y=x+1/x,f(x)在(-∞,-1)或(1,+∞)上单调递增,f(x)在(-1,0)或(0,1)上单调递减(可用函数单调定义证,也可求导证)
∴ab=1/4时y=ab+1/ab取最小值,y最小=4+(1/4)=17/4
法二:
a,b∈R+,a+b=1≥2√ab→ab≤1/4→1/ab≥4
y=ab+1/ab=ab+1/16ab+15/16ab≥2√(ab*1/16ab)+15/16ab≥1/2+(15/16)*4=17/4.当且仅当a=b=1/2时,y取最小值17/4

根据均值定理。a+b大于等于2倍根号下a乘b