利用1/n*(n+1) = 1/n - 1/(n+1)计算1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 13:09:53
x){ڱyZyچ
@._[|tC{:*t4Fmi$SL;ڸ]m4Xf.eU UdWdUdW߳ƫh!&=lx{ӾO"$ف 94
利用1/n*(n+1) = 1/n - 1/(n+1)计算1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)
利用1/n*(n+1) = 1/n - 1/(n+1)计算1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)
利用1/n*(n+1) = 1/n - 1/(n+1)计算1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)
1/(x-2)(x-3)=[1/(x-2)]-[1/(x-3)]
1/(x-1)(x-2)=[1/(x-1)]-[1/(x-2)]
于是1/(x-2)(x-3)+1/(x-1)(x-2)=[1/(x-1)]-[1/(x-3)]=1/(x-1)(x-3)
所以原式=-1/(x-1)(x-3)
(n+1)^n-(n-1)^n=?
推导 n*n!=(n+1)!-n!
9题 = 101 (n+1)!- = n*n!n(n+1)!- n*n!
f(x)=e^x-x 求证(1/n)^n+(2/n)^n+...+(n/n)^n
利用二项式定理证明:3^n>[2^(n-1)](n+2) (n∈N*,n≥2).
我们可以利用公式(n+1)^=n^+2n+1
如何利用matlab编程求解n!从n=1到n=20求和
利用定义证明 lim(n->无穷大)((2n+1)/n)=2
利用比值审敛法判定级数[∞ ∑ n=1] (n!)^2 / [(2n)!]的敛散性
2+4+6+.+2n=n(n+1) 利用归纳法证明
2+4+6+...+2n=n(n+1)利用归纳法
n^(n+1/n)/(n+1/n)^n
证明:(n+1)n!= (n+1)!
为什么 [ln(n)]'/n'=1/n
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)...1=n
2^n/n*(n+1)
利用等比数列求和公式证明:(a+b)(a^n+a^(n-1)b+a^(n-2)b^2+.+b^n)=a^(n+1)-b^(n+1)
利用stolz公式求Sn=[lnC(n,0)+lnC(n,1)+lnC(n,2)+…lnC(n,n)]/(n^2)的极限.