设f(x,y)=xy+f(u,v)dudv,如题,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 21:02:49
设f(x,y)=xy+f(u,v)dudv,如题,
xQJ@}aAP |J"}ܬnjv5Bh_"mB }-$ҢPa8{Ι;~<;sXbq0?6v` ;Fсm`OK:RDsDʶUЋGt ceIG̔"ExZu c+%[-TV\HdRr\L>eVԶ: F=*4YY(-l )M,AEr N}HtupV/Շscvz^(zG iШ{}e*U{>Փ7F=ˢ th" ;ܢh ǿ}?^t*1Ȼ^spS$nOH+SL Y*e

设f(x,y)=xy+f(u,v)dudv,如题,
设f(x,y)=xy+f(u,v)dudv,

如题,

设f(x,y)=xy+f(u,v)dudv,如题,
∫∫f(u,v)dudv 是一个数,记为 A,
则 f(x,y) = xy+A,两边在D上作二重积分,得
∫∫f(x,y)dxdy =∫∫xydxdy + A∫∫dxdy
即 A = ∫∫xydxdy + Aσ
A =∫xdx∫ydy + A∫x^2dx
=∫x^5/2dx + A/3,
得 2A/3 = 1/12,A=1/8,
则 f(x,y) = xy+1/8.