y=ax+b/cx+d,求y',

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:18:47
y=ax+b/cx+d,求y',
xRJ@Il`7 f#B; IwZi҅iq#Xآs2I/8M&;0s̽3QmKufөYhjm45u~=y>ǂL|0۴%G&ƈ"0L"0l56 ~"ͦ~sNj_?|ůgn$ln=+R)ed,APY\-07xragZI\l&)%)W L%Irt+q)F&̃Da +§(O2W6uK reh<7F# Qo^W~Wz5

y=ax+b/cx+d,求y',
y=ax+b/cx+d,求y',

y=ax+b/cx+d,求y',
除法求导法则
y=f(x)/g(x)
y' = (f ' (x)g(x) - f(x)g ' (x))/g(x)^2(为看清楚哪个带导数中间空开了)
所以
y=ax+b/cx+d
y'=(ax+b)'(cx+d)-(ax+b)(cx+d)' / (cx+d)^2
=a(cx+d)-c(ax+b) / (cx+d)^2
=(ad-bc) / (cx+d)^2

y=ax+b/cx+d,
y'=(ax+b)'*(cx+d)-(ax+b)*(cx+d)'/(cx+d)^2
=(a*(cx+d)-(ax+b)*c)/(cx+d)^2
=(ad-bc)/(cx+d)^2

y'=a+b/c 除以x就行了

y'=[(ax+b)'(cx+d)-(ax+b)(cx+d)']/(cx+d)²
=[ad-bc]/(cx+d)²

导数的公式 除法公式!!! 参考下
y'=[(ax+b)'(cx+d)-(ax+b)(cx+d)']/(cx+d)²
=[ad-bc]/(cx+d)²