,奇函数,在R上单调递减,若对任意实数m,不等式f(m^2-2m)+f(m^2-k)<0恒成立,求实数K的取值范围.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:27:20
xRn@*U+xw^S'qvڤnLhQ("E !h+81(v)4TBB43><+(~#n|KzGxӸmōn~ۏNOn mc+j_C\f*H%gtsz'ѨRĖV<}An0,]q;s,Z-inZE=^QV}ټwEtfI2C SAlmqBq@p ǒ@lST!ic(wTs)-LЙSRDM3`" !DJ.Eg҂&! LI9URp[ÎD6(5qHz 9V
XRn8J:PP(td&Ħqs`BDZuia7gb@9f`u8j>GS+4xiQ{6b:`dke)zGY_ tluRh'!kNzO&|S
,奇函数,在R上单调递减,若对任意实数m,不等式f(m^2-2m)+f(m^2-k)<0恒成立,求实数K的取值范围.
,奇函数,在R上单调递减,若对任意实数m,不等式f(m^2-2m)+f(m^2-k)<0恒成立,求实数K的取值范围.
,奇函数,在R上单调递减,若对任意实数m,不等式f(m^2-2m)+f(m^2-k)<0恒成立,求实数K的取值范围.
解由f(m^2-2m)+f(m^2-k)<0
得f(m^2-2m)<-f(m^2-k)
又由f(x)是奇函数
即f(m^2-2m)
即m^2-2m>k-m^2
即k<2m^2-2m对任意实数m恒成立
而2m^2-2m=2(m-1/2)²-1/2≥-1/2
故k<-1/2