1/1*3+1/3*5+.1/(2n-1)(2n+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 00:54:32
x)372672305چ6IExl`komTR5,"mj]0!Mh><;6`ӾO4F݃d(dxdC#kh#oP#:5RV05D
Ѥ1!դZ4 PDՇUJKA i
1/1*3+1/3*5+.1/(2n-1)(2n+1)
1/1*3+1/3*5+.1/(2n-1)(2n+1)
1/1*3+1/3*5+.1/(2n-1)(2n+1)
=1/2*[1-1/3+1/3-1/3+……+1/(2n-1)-1/(2n+1)]
=1/2*[1-1/(2n+1)]
=n/(2n+1)
原式=1/2[1/1-1/3+1/3-1/5...........+1/(2n-1)-1/(2n+1)]
=1/2-1/2(2n+1)
½ [2/1*3+2/3*5+……+2/(2n-1)(2n+1)]
=½ {(3-1)/1*3 + (5-3)/3*5+……+[(2n+1)-(2n-1)]/(2n-1)(2n+1)]}
=½ [1-1/3 +1/3-1/5+……+1/(2n-1)-1/(2n+1)]
=½ [1-1/(2n+1)]
=½* 2n/(2n+1)
=n/(2n+1)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
3(n-1)(n+3)-2(n-5)(n-2)
2^n*3^n*5^(n+1)/30^n
n+(n+1)+(n+2)+(n+3)+(n+4)=5n+10这道题怎么解
1/[n(n+1)]+1/[(n+1)(n+2)]+1/[(n+2)(n+3)]+1/[(n+3)(n+4)]+[(n+4)(n+5)}怎么算谢谢了,
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简(n+1)(n+2)(n+3)
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)...1=n
1+(n+2)+(2n+3)+(3n+4)+(4n+5)+……((n-1)n+n)的答案
lim2^n +3^n/2^n+1+3^n+1
n(n+1)(n+2)(n+3)+1 因式分解
n(n+1)(n+2)(n+3)+1等于多少
lim(n+3)(4-n)/(n-1)(3-2n)
lim(n^3+n)/(n^4-3n^2+1)
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】