已知椭圆C:x^2/a^2+y^2/b^2=1的离心率为√2/2,右焦点F关于直线x-2y=0对称的点在圆x^2+y^2=4上(1)求此椭圆的方程(2)设M是椭圆C上异于长轴端点的任意一点,试问在x轴上是否存在两个定点A,B,使得直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:46:26
已知椭圆C:x^2/a^2+y^2/b^2=1的离心率为√2/2,右焦点F关于直线x-2y=0对称的点在圆x^2+y^2=4上(1)求此椭圆的方程(2)设M是椭圆C上异于长轴端点的任意一点,试问在x轴上是否存在两个定点A,B,使得直
xVN*W~& dJS26ڤw>AS%h M< Vиi8C5Õ5 u^4m2Yk}Yv8ˮ|܄왜?5!+^#dkhlZw5#{dm^Ky#Z-_ ڨ\2JLr ˞vN*>][{z_FyTh8qf<]M GjkM k5ka,%jmH@%Ɩ+f$b=X[:A𒁀eD<g% 0 ׿6sBb>fU/'>ֵ-`5OočU:?(Ϥ"DX~b+ϤW{sċNLa:ҐS2[OG~#{^qɎ9Wii|7lsIƏSⱰ^|F .vp]v.D/s-gcӆX $ tr'JԇGVb>z=u >c ~@czǚL-#b3.h$q4GaWtoxY3[Y&6JG-F:kf|=ʐ'qPQ,,ռU6ЧWWCpm\z=ϢcŧCF!p !32 [݇2`Hq w3Xش"H!q&jN4u&x{+!;tW&yb(|VC0;OTa6ҷQ#_;H}TK0nRJXZ#XKЇ-C]+`lg[44[iŭe-g:. NL@WVv Ymhl_;zQ<4jGf)`׀kaacߜ绷LYRj.(PC 61

已知椭圆C:x^2/a^2+y^2/b^2=1的离心率为√2/2,右焦点F关于直线x-2y=0对称的点在圆x^2+y^2=4上(1)求此椭圆的方程(2)设M是椭圆C上异于长轴端点的任意一点,试问在x轴上是否存在两个定点A,B,使得直
已知椭圆C:x^2/a^2+y^2/b^2=1的离心率为√2/2,右焦点F关于直线x-2y=0对称的点在圆x^2+y^2=4上
(1)求此椭圆的方程
(2)设M是椭圆C上异于长轴端点的任意一点,试问在x轴上是否存在两个定点A,B,使得直线MA,MB的斜率之积为定值?若存在,则求出这两个顶点及定值;若不存在,请说明理由.

已知椭圆C:x^2/a^2+y^2/b^2=1的离心率为√2/2,右焦点F关于直线x-2y=0对称的点在圆x^2+y^2=4上(1)求此椭圆的方程(2)设M是椭圆C上异于长轴端点的任意一点,试问在x轴上是否存在两个定点A,B,使得直
(1)由离心率e=c/a=√2/2知c²/a²=1/2,得a²=2b²
右焦点坐标(c,0),过右焦点和关于直线x-2y=0对称的点的直线方程为y=-2(x-c)
求得对称点坐标为(4c/5,2c/5),所以对称点坐标为(3c/5,4c/5)
因为这个点在x²+y²=4上,所以有(3c/5)²+(4c/5)²=4,求得c²=4
故a²=8,b²=4
椭圆方程为x²/8+y²/4=1
(2)不存在.
定性分析
只有圆上会找到直径两端点,使得异于两端点的任意一点到这两端点斜率乘积恒为0,即两线段永远成直角.但是这是椭圆上一点,所以无法找到.
定量分析
不妨设M(2√2cosθ,2sinθ) (0

就如楼上那位仁兄的回答,但我的看法不同,我也在做这道题(回家作业,本来想直接百度抄抄的,呵呵),我觉得是存在的
(1)由离心率e=c/a=√2/2知c²/a²=1/2,得a²=2b²
右焦点坐标(c,0),过右焦点和关于直线x-2y=0对称的点的直线方程为y=-2(x-c)
求得对称点坐标为(4c/5,2c/5),所以对称点坐标为(3...

全部展开

就如楼上那位仁兄的回答,但我的看法不同,我也在做这道题(回家作业,本来想直接百度抄抄的,呵呵),我觉得是存在的
(1)由离心率e=c/a=√2/2知c²/a²=1/2,得a²=2b²
右焦点坐标(c,0),过右焦点和关于直线x-2y=0对称的点的直线方程为y=-2(x-c)
求得对称点坐标为(4c/5,2c/5),所以对称点坐标为(3c/5,4c/5)
因为这个点在x²+y²=4上,所以有(3c/5)²+(4c/5)²=4,求得c²=4
故a²=8,b²=4
椭圆方程为x²/8+y²/4=1
(2)存在
不妨设M(2√2cosθ,2sinθ) (0<θ<π或π<θ<2π)
若存在A(m,0)、B(n,0)
MA斜率k1=2sinθ/(2√2cosθ-m)、MB斜率k2=2sinθ/(2√2cosθ-n)
则k1k2=4sin²θ/[8cos²θ-2√2(m+n)cosθ+mn]=4(1-cos²θ)/[8cos²θ-2√2(m+n)cosθ+mn]
那位仁兄说找不到定值mn我觉得找得到
分式上边是4-4cos²θ,那下边只要是它的k倍就可约,找得到定值了,已经有8cos²θ那猜想使得-2√2(m+n)cosθ+mn等于-8就好了,cosθ要没有,则m+n=0,mn=-8,所以m=2√2 n=-√2 或m=-2√2,n=2√2
所以定点就是长轴端点
打的挺辛苦啊,可能现在楼主不需要这个答案了,打上去就当我是无聊吧,不知道对不对的说,以前一直挑初中题目回答,难得回答高中的呵,高三党伤不起,我妈还不许我上网,偷偷呐。。(废话好多- -|||)

收起

存在的,定点就是椭圆左右顶点。

如何从椭圆的一般方程求椭圆的五个参数已知椭圆一般方程为A*x^2+B*x*y+C*y^2+D*x+E*y+F=0,其中A,B,C,D,E,F,均不为0,现在要去求椭圆的中心坐标(x0,y0),椭圆的长半轴a,椭圆的短半轴b,以及椭圆长半轴与X 已知椭圆C;x^2/a^2+y^2/b^2=1,(a>b>0),其焦距为2c,若c/a=(根号5-1)/2,则称椭圆C为黄金椭圆求证黄金椭圆C:x^2/a^2+y^2/b^2=1,(a>b>0),中,a,b,c成等比数列 已知椭圆C:x.x/a.a+y.y/b.b=1的左焦点F及点A(0,b),原点O到直线FA的距离为√2/2b 求椭圆C的离心率? 已知三角形ABC的顶点B.C在椭圆x^2/3+y^2=1 上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上...已知三角形ABC的顶点B.C在椭圆x^2/3+y^2=1 上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点 已知c是椭圆x^2/a^2+y^2/b^2=1{a>b>0}的半焦距,求{b+C}/a的取值范围? 一道高二数学椭圆题已知直线l:y=x+k经过椭圆C:x^2/a^2+y^2/b^2=1(a>1)的右焦点F2且与椭圆C交于A、B两点,若以弦AB为直径的圆经过椭圆的左焦点F1,求椭圆C的方程.写出步骤. 已知椭圆x2/a2+y2/b2=1(a>b>0),直线l1:x/a-y/b=1被椭圆C截得弦长为2√2,过椭圆C的右交点且斜率为√3的直线L2椭圆C截得弦长是椭圆长轴2/5,求椭圆C的方程。 已知,椭圆C:x²+3y²=3b²(b>0).(1)求椭圆C的离心率 (2)若b=1,AB是椭圆已知,椭圆C:x²+3y²=3b²(b>0).(1)求椭圆C的离心率 (2)若b=1,AB是椭圆C上两点,AB的绝对值等于√3,求A 已知椭圆c:x^2/a^2+Y^2/b^2=1(a>b>0)的离心率为1/2,其右焦点也是抛物线y^2=4x的焦点,求椭圆c的方程 8.已知椭圆x*2/a*2+y*2/b*2=1(a>b>0)的左右焦点分别为F1(-c,o),F2(c,0).若椭圆上8.已知椭圆x*2/a*2+y*2/b*2=1(a>b>0)的左右焦点分别为F1(-c,o),F2(c,0).若椭圆上存在点P使a/sin∠PF1F2=c/sin∠PF2F1,则该椭圆的离 已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>c),其相应于焦点F(2,0)的准线方程为x=4求椭圆C的方程要过程 已知c是椭圆想x^2+y^2=1(a>b>0)的半焦距,则(b+c)/a的取值范围 已知F(c,0)是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点,设b>c,则椭圆的离心率e的取值范围 已知椭圆x^2/a^2+y^2/b^2(a 已知椭圆X^2/A^2+Y^2/B^2=1的长轴的一个端点是A(2,0),直线L经过椭圆如图所示,已知椭圆X^2/a^2+Y^2/b^2=1(a>0,b>0),A(2,0)为椭圆与x轴的一个交点,过椭圆的中心O的直线交椭圆于B、C两点,且向量AC*向量BC=0,| 已知椭圆C:y^2/a^2+x^2/b^2=1(a>b>0)的右顶点A(1,0),过C的焦点且垂直长轴的弦长为1,求椭圆C的方程 已知椭圆C:y^2/a^2+x^2/b^2=1(a>b>0)的右顶点A(1,0),过C的焦点且垂直长轴的弦长为1,求椭圆C的方程 已知椭圆C:x^2/a^2+y^2/b^2=1,(a>b>0)与直线l 2x+y-2=0交于A,B两点,且OA⊥OB,椭圆c的长轴长是短轴长的2倍 求椭圆c的离心率 求椭圆c的方程 若圆Q(x-m)^2+y^2=r^2在椭圆c的内部,且与直线l相切,求圆q的半径r