∫1/√(x^2+2x+2)dx?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:02:50
x){ԱPQ,8#m
m#͔
{"}2v6RH ¤r "(dR
mCTe`U
)%y:)ũqF
)p} A4aѥc5kj8&cmbQrqf^D~qAb(0 It7
∫1/√(x^2+2x+2)dx?
∫1/√(x^2+2x+2)dx?
∫1/√(x^2+2x+2)dx?
∫1/√(x^2+2x+2) dx
=∫1/√[(x^2+1)^2+1] dx,令u=x+1
=∫1/√(u^2+1) du,令u=tany,du=sec^2y dy
=∫sec^2y/secy dy
=ln(secy+tany)+C
=ln[u+√(u^2+1)]+C
=ln[(x+1)+√(x^2+2x+2)]+C
或=arcsinh(x+1)+C
∫x√(1+2x)dx
∫1/[x(1+√x)^2dx∫1/[x(1+√x)^2]dx
∫[dx/(e^x(1+e^2x)]dx
∫1+2x/x(1+x)*dx∫1+2x/x(1+x) * dx
∫dx/(x√x^2+x+1)
∫1/(x(√x+x^(2/5)))dx
∫(x-1)^2dx,
∫x^1/2dx
1/(x+x^2)dx
求不定积分 ∫ 1/(1+2x)² dx ∫ x/√x²+4 dx
∫X√(2-5X)dx
∫(√(x^2+6x))dx
∫dx/x^2(1-x^2)
∫dx/x^2(1+x^2)
∫X^2/1-x^2 dx.
∫X^2/1-x^2 dx.
∫1/x^2+x+1dx
∫1/(x^2+x+1)dx