一道简单的有理函数积分题,求详细运算过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 09:51:35
一道简单的有理函数积分题,求详细运算过程
xTk@WFao%.i"^ߡ\ruml,>U.% 2վ B[ԥ/xm.ʺ=rw_ɗovp|^M?tÓNp4~ s8r6;(ꗵ&-là J|T{HׅW 5DZiN4ly$v}w}m+JIBDK$"P]Px$($(P.a5ATj@yEjU{d(ƍ eYdՒPR5BM "b|!0 m XsO7~MoPz G~>|e1>3Ȑ98:V1Q\?-}ʛx=ќbཛzN/. C#48Kepz(mHgEL_),eWNVjG"F91gݤ.qS;Nq*Tpd=۪¢moPE}4HF#eMBw7xYgpZ蘄$7?yq{K[ʪzs#N4bi9p@'( FKS1S.d*Y.7ʴ8a+%̕mzo 2b e

一道简单的有理函数积分题,求详细运算过程
一道简单的有理函数积分题,求详细运算过程

一道简单的有理函数积分题,求详细运算过程
∵∫[1/(x^2+x+1)^2]dx=∫{1/[(x+1/2)^2+3/4]^2}dx,
∴可令x+1/2=(√3/2)t,则:t=(2x+1)/√3,dx=(√3/2)dt,
∴∫[1/(x^2+x+1)^2]dx
=(√3/2)∫{1/[(3/4)t^2+3/4]^2}dt=[(√3/2)/(9/16)]∫[1/(t^2+1)^2]dt
=(8√3/9)∫[1/(t^2+1)^2]dt.
再令t=tanu,则:u=arctant,dt=[1/(cosu)^2]du,
∴∫[1/(x^2+x+1)^2]dx
=(8√3/9)∫{1/[(tanu)^2+1]^2}[1/(cosu)^2]du
=(8√3/9)∫(cosu)^2du
=(4√3/9)∫(1+cos2u)du
=(4√3/9)∫du+(2√3/9)∫cos2ud(2u)
=(4√3/98)u+(2√3/9)sin2u+C
=(4√3/9)arctant+(4√3/9)sinucosu+C
=(4√3/9)arctan[(2x+1)/√3]+(4√3/9)tanu/[(tanu)^2+1]+C
=(4√3/9)arctan[(2x+1)/√3]+(4√3/9)t/(t^2+1)+C
=(4√3/9)arctan[(2x+1)/√3]
 +(4√3/9)[(2x+1)/√3]/{[(2x+1)/√3]^2+1}+C
=(4√3/9)arctan[(2x+1)/√3]+(4/9)(2x+1)/[(4x^2+4x+1)/3+1]+C
=(4√3/9)arctan[(2x+1)/√3]+(4/3)(2x+1)/(4x^2+4x+1+3)+C
=(4√3/9)arctan[(2x+1)/√3]+(2x+1)/(3x^2+3x+3)+C.