如图,三角形ABC是等腰直角三角形,角A=90度,点P、Q分别是AB、BC上的动点,且满足BP=AQ,D是BC的中点.1)求证:三角形PDQ是等腰直角三角形.2)当点P运动到什么位置时,四边形APDQ是正方形,说明理由

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:28:04
如图,三角形ABC是等腰直角三角形,角A=90度,点P、Q分别是AB、BC上的动点,且满足BP=AQ,D是BC的中点.1)求证:三角形PDQ是等腰直角三角形.2)当点P运动到什么位置时,四边形APDQ是正方形,说明理由
xS]KP+Rj!9i4pIRm:6vI*'}J;iUOu׿7mWy8򔷿U _A5|}ԚxpAA>, 9YZm;g7qCUciY|Sb3I: l^w#"ׁsՠxZx֎ ._vlׂ`(C;>S0(>~JB̙j0?_q6[( RFzƚeh%yaR BɬW)NϪi6M(-)i^E[ް8Y̛TP,JK2M@0(/+R ibA}+-)1" 0""#MӢRͧl;K-W8cp 7{V .šV,d 6X:p~dNz7kn$*b28AuUAbppic=ura0Q`p5FoN:>)_őH/:ظBtHkڈLA,c7x W)2y

如图,三角形ABC是等腰直角三角形,角A=90度,点P、Q分别是AB、BC上的动点,且满足BP=AQ,D是BC的中点.1)求证:三角形PDQ是等腰直角三角形.2)当点P运动到什么位置时,四边形APDQ是正方形,说明理由
如图,三角形ABC是等腰直角三角形,角A=90度,点P、Q分别是AB、BC上的动点,且满足BP=AQ,D是BC的中点.1)求证:三角形PDQ是等腰直角三角形.2)当点P运动到什么位置时,四边形APDQ是正方形,说明理由

如图,三角形ABC是等腰直角三角形,角A=90度,点P、Q分别是AB、BC上的动点,且满足BP=AQ,D是BC的中点.1)求证:三角形PDQ是等腰直角三角形.2)当点P运动到什么位置时,四边形APDQ是正方形,说明理由
(1)连结AD,
∵△ABC是等腰直角三角形,D是BC的中点,
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,
又∵BP=AQ,
∴△BPD≌△AQD,
∴PD=QD,∠ADQ=∠BDP,
∵∠BDP+∠ADP=90°,
∴∠ADQ+∠ADP=∠PDQ=90°,
∴△PDQ为等腰直角三角形
(2)当P点运动到AB的中点时,四边形APDQ是正方形,
由(1)知△ABD为等腰直角三角形,
当P为AB的中点时,DP⊥AB,即∠APD=90°,
又∵∠A=90°,∠PDQ=90°,
∴四边形APDQ为矩形,
又∵DP=AP=1/2AB
∴四边形APDQ为正方形.\x09