在 △ABC中,已知acosA+bcosB=ccosC,判断△ABC形状

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:37:00
在 △ABC中,已知acosA+bcosB=ccosC,判断△ABC形状
x){:g£iXt&&;j'I'd cɳik!]kMR> l(.~guOh{:ޙp/@nDQo:X8(83Q' pI05oɴg}Ki{t_&X磎-HM V1Yo "lA$ OQIZQI]/X]ggoy|Y-Ɠ@=6yvC?L

在 △ABC中,已知acosA+bcosB=ccosC,判断△ABC形状
在 △ABC中,已知acosA+bcosB=ccosC,判断△ABC形状

在 △ABC中,已知acosA+bcosB=ccosC,判断△ABC形状
用正弦定理和余弦定理都行
由正弦定理得
a=2RsinA,b=2RsinB,c=2RsinC(R为△ABC外接圆半径)
∴acosA+bcosB=ccosC
→2RsinAcosA+2RsinBcosB=2RsinCcosC
→sin2A+sin2B=sin2C
→2sin(A+B)cos(A-B)=2sinCcosC
→2sin(π-C)cos(A-B)=2sinCcosC
→cos(A-B)=cosC
→A-B=C
→A=B+C
→2A=A+B+C=π
→A=π/2.
即△ABC是以A为直角的直角三角形