设P是圆x^2+(y-2)^2=1上的一动点,Q为双曲线x^2-y^2=1上的一个动点,则 PQ的最小值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:25:49
设P是圆x^2+(y-2)^2=1上的一动点,Q为双曲线x^2-y^2=1上的一个动点,则 PQ的最小值为
xRN@ RpגHP`c B@#!,x1δw!q͢ͽ9N\ڛnT֚QJѰ"YII8V@kcXͱl|b"3ki (3 tޤo<)_Oϥo.t[B;Ȝ l7zUZ w8EpjwިJKo^M;CF4}̃1ЈБ&pfi޶zVAn3ޜU)f Aơ(C)c7\#4 gp ,[zn@|_o{Jj=zc%|N3ZVB(y[ڀY‡W1HXp 3R%&"J"w$",@205Vݷ(㷹4/)

设P是圆x^2+(y-2)^2=1上的一动点,Q为双曲线x^2-y^2=1上的一个动点,则 PQ的最小值为
设P是圆x^2+(y-2)^2=1上的一动点,Q为双曲线x^2-y^2=1上的一个动点,则 PQ的最小值为

设P是圆x^2+(y-2)^2=1上的一动点,Q为双曲线x^2-y^2=1上的一个动点,则 PQ的最小值为
设圆心是 A.
首先,明确一点,|PQ|要想达到最小值,P 一定在 AQ 的连线上,因为,如果 P 不在这条连线上,假设在 P' 点,那么 AQ = PA + PQ < P'A + P'Q,
由于 PA = P'A ,PQ < P'Q.
以上说明了,只需求 AQ 的最小值,AQ - 半径 ,就是|PQ|的最小值了.
下面求 AQ 的最小值.
A = (0,2) ,
AQ^2 = x^2 + (y-2)^2
x,y 满足x^2-y^2=1 ,x^2 = y^2 + 1
AQ^2 = y^2 + 1 + y^2 - 4y + 4 = 2y^2 - 4y + 5 =
2(y^2 - 2y + 1) + 3 =
2(y-2)^2 + 3 >= 3
AQ >= 根3
PQ >= 根3 - 1