Ω为x^2+y^2+z^2≤1,∫∫∫(3/4+x·cosy+x^2·e^z·siny+x^2·y^2·z)dv,函数中后三项都等于0,为什么?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 02:47:16
xQNP
/?!qZDCjPJb$(2%Ѥ#]]j4&m}TGi'!
-=
sXLH>Qyn$b^)y@vL9ryr.glv)HPNjߋv-vVj-k3b _H?#6)JDeeFJ>@8P{$n7HyNPVY9U;t\oyPe\Hc/Na] <mU])Z,eqj6Pթ'hVڕa#
{XVtK<܄Jjŷ+P@
Ω为x^2+y^2+z^2≤1,∫∫∫(3/4+x·cosy+x^2·e^z·siny+x^2·y^2·z)dv,函数中后三项都等于0,为什么?
Ω为x^2+y^2+z^2≤1,∫∫∫(3/4+x·cosy+x^2·e^z·siny+x^2·y^2·z)dv,函数中后三项都等于0,为什么?
Ω为x^2+y^2+z^2≤1,∫∫∫(3/4+x·cosy+x^2·e^z·siny+x^2·y^2·z)dv,函数中后三项都等于0,为什么?
因为被积区域是高度对称的,关于xoy,yoz,xoz面都对称,因为第一个函数关于x是奇函数,区域关于yoz对称,所以为0...同理可以解释后两个奇函数在对称区域积分为0
后3项都是奇函数,而奇函数关于原点对称,所以关于原点对称区间两块体积大小相等,符号相反,相加为0。
很简单啊,因为都是奇函数,奇函数在对称域内的定积分为0
Ω为x^2+y^2+z^2≤1,∫∫∫(3/4+x·cosy+x^2·e^z·siny+x^2·y^2·z)dv,函数中后三项都等于0,为什么?
计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y^2
计算I=∫∫x(1+x^2z)dydz+y(1-x^2z)dzdx+z(1-x^2z)dxdy其中∑为曲面z=√x^2+y^2(0
设∑为曲面z=x^2+y^2(z≤1)的上侧,求曲面积分∫∫(x+z^2)dydz-zdxdy诉求
∫∫∫(2xy^2+2yx^2+z)dv,其中,Ω={(x,y,z)|x^2+y^2+z^2≤2z}如题
投影法和截面法求三重积分I=∫∫∫z^2dxdydz,Ω为三个坐标平面及平面x+y+z=1,及x+y+z=2所围成空间闭区域
设x,y.z为实数,2x.3y.4z是等比数列,1/x,1/y.1/z是等差数列,则(x/z)+(z/x)是多少?
计算三重积分∫∫∫Ω(x^2+y^2)dv,Ω={(x,y,z)|(x^2+y^2)/2≤z≤2}
高数第一型曲面积分题!设∑为椭圆面x^2/2+y^2/2+z^2=1 的上半部,点p(x,y,z)∈∑,π为∑在点p处的切平面,p(x,y,z)为原点到平面π的距离,求∫∫z/p(x,y,z)ds
1、y-x/x²-y²2、(x-y)(y-z)(z-x)/(z-y)(y-x)(x-z)
求对面积曲面积分:∫∫(x+y+z)dS ∑为球面x^2+y^2+z^2=a^2上z≥h(0
计算∫∫(S)(x+y+z)dS,其中S为曲面x^2+y^2+z^2=a^2,z>=0
∫∫∫(x+y+z)dxdydz.其中Ω:0≤x≤2,|y|≤1,0≤z≤3; 求三重积分
求三重积分∫∫∫(z^3)㏑(x^2+y^2+z^2+1)/(x^2+y^2+z^2+1)dv,其中x^2+y^2+z^2≤1
∫∫e^z/√(x^2+y^2 ) dxdy,∑为锥面,z=√(x^2+y^2 )及平面z=1,z=2所围的立体表面的外侧.如图.
求三重积分∫∫∫zdxdydz,其中积分区域为z=x^2+y^2,z=1,z=2所围区域
设∑为球面x^2+y^2+z^2=1,则对面积的曲面积分∫∫(x^2+y^2+z^2)dS=?
∫∫x^2dydz+y^2dzdx+z^2dxdy,其中曲面为x^2+y^2+z^2=1的上半部分外侧