求证:m²-n²,m²+n²,2mn是直角三角形的三条边长m>n,m,n是正整数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 08:07:40
求证:m²-n²,m²+n²,2mn是直角三角形的三条边长m>n,m,n是正整数
x){{fYAh(_7{6c[^,dG'|wY-@ _r\<\gk? 6IEԵl"6 l!8#ݼ8#8#m A@,nggkT6(FȂ !FAªjʆ ǃi(_'* b3v@UB sH 4$P]GPAՙA \&p6`S^6-~M==hE ̧<ٱ )-G0Ԅ' mTMdQ44aTldTk 5l[)X53X

求证:m²-n²,m²+n²,2mn是直角三角形的三条边长m>n,m,n是正整数
求证:m²-n²,m²+n²,2mn是直角三角形的三条边长
m>n,m,n是正整数

求证:m²-n²,m²+n²,2mn是直角三角形的三条边长m>n,m,n是正整数
(m^2-n^2)^2+(2mn)^2
=m^4+n^4-2m^2n^2+4m^2n^2
=m^4+n^4+2m^2n^2
=(m^2+n^2)^2
所以m²-n²,m²+n²,2mn是直角三角形的三条边长

m>n,m,n是正整数
则(m²-n²)²=m^4-2m²n²+n^4
(m²+n²)²=m^4+2m²n²+n^4
(2mn)²=4m²n²
所以(m²+n²)²=(m²-n²)²+(2mn)²
那么m²-n²,m²+n²,2mn是直角三角形的三条边长

因为(m^2-n^2)^2=m^4+n^4-2m^2n^2``````````````````(1)
(m^2+n^2)^2=m^4+n^4+2m^2n^2~~~~~~~~~~~~~~(2)
(2mn)^2=4m^2n^2```````````````````````````````(3)
(1)+(3)=(2)
所以m²-n²,m²+n²,2mn是直角三角形的三条边长