关于1的无穷次方类型的极限求法~这个类型里面说令limf(x)的g(x)方=e的J次方,然后就推导出J=limg(x)[f(x)-1]...请问为什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:46:27
关于1的无穷次方类型的极限求法~这个类型里面说令limf(x)的g(x)方=e的J次方,然后就推导出J=limg(x)[f(x)-1]...请问为什么
x͒N@_e`=&!+CZ0D$%A b(̥] tЌ bW=?g洉&еҫ%s CC&+Axrv잳v_3nsH)JYN4o%5-4c TsI`uL,m'h?™ 2͝ X^fX0XkB D3RF:\ JK;6N -p Ax'UR6,̾LY]y!rKˠdnH&2ly-L[*, X#xK\P/F !/X-~"R-nT}1<

关于1的无穷次方类型的极限求法~这个类型里面说令limf(x)的g(x)方=e的J次方,然后就推导出J=limg(x)[f(x)-1]...请问为什么
关于1的无穷次方类型的极限求法~
这个类型里面说令limf(x)的g(x)方=e的J次方,然后就推导出J=limg(x)[f(x)-1]...请问为什么

关于1的无穷次方类型的极限求法~这个类型里面说令limf(x)的g(x)方=e的J次方,然后就推导出J=limg(x)[f(x)-1]...请问为什么
证明:
im f(x)^g(x)
=lim e^[In(f(x)^g(x))]
=lim e^[g(x)Inf(x)]
=e^[lim [g(x)Inf(x)] ]
知道im f(x)^g(x)是关于x的1的无穷次方类型的极限
所以f(x)->1 ,g(x)->∞
所以Inf(x)->0
我们已经知道当t->0时,e^t-1 -> t
我们令t=Inf(x),则e^Inf(x)-1 -> Inf(x)
所以 Inf(x) 与 e^Inf(x)-1 (即f(x)-1) 为等价无穷小
所以,
im f(x)^g(x)
=e^[lim [g(x)Inf(x)] ]
=e^[lim g(x)[f(x)-1] ]