求以下方程极限x*e^(-x)(x^3+t)/(2x^3-1)x*sin(1/x)x趋向正无穷
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 16:56:31
求以下方程极限x*e^(-x)(x^3+t)/(2x^3-1)x*sin(1/x)x趋向正无穷
求以下方程极限
x*e^(-x)
(x^3+t)/(2x^3-1)
x*sin(1/x)
x趋向正无穷
求以下方程极限x*e^(-x)(x^3+t)/(2x^3-1)x*sin(1/x)x趋向正无穷
limx*e^(-x)
=limx/e^x (求导)
=lim1/e^x (x趋于正无穷)
=0
lim(x^3+t)/(2x^3-1)
=lim(1+t/x^3)/(2-1/x^3) (上下同除x^3)
=(1+0)/(2-0)
=1/2
limx*sin(1/x)
=limsin(1/x)/(1/x) (求导)
=lim[(-1/x^2)cos(1/x)]/(-1/x^2)
=cos0
=1
均作变换:x=rcosa,y=rsina,
(x,y)→(0,0)变为r→0.
11.原式=lim<(x,y)→(0,0)>x^2*y^2/(x^4+y^4)
=lim
不存在。
13.原式=lim<(x,y)→(0,0)>x^2*y/(x^4+4y^2)
=lim
全部展开
均作变换:x=rcosa,y=rsina,
(x,y)→(0,0)变为r→0.
11.原式=lim<(x,y)→(0,0)>x^2*y^2/(x^4+y^4)
=lim
不存在。
13.原式=lim<(x,y)→(0,0)>x^2*y/(x^4+4y^2)
=lim
不存在.
15.原式=lim
=lim
=2.
仅供参考。
希望对你能有所帮助。
收起