已知tanx=2 ,求M=2sinxcosx+cos^2 x+1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 00:49:49
已知tanx=2 ,求M=2sinxcosx+cos^2 x+1
x){}KK*ltml5*̫H/qF چ6IE*/!\2h2@ M}r@>45P?t=];H>[r'BdaFm i0%ZF@FqF`Y 247l aa\rX!H C5zc)!y *l'~

已知tanx=2 ,求M=2sinxcosx+cos^2 x+1
已知tanx=2 ,求M=2sinxcosx+cos^2 x+1

已知tanx=2 ,求M=2sinxcosx+cos^2 x+1
M=2sinxcosx+cos^2 x+1
=(2sinxcosx+cos^2x+1)/1
=(2sinxcosx+cos^2x+sin^2x+cos^2x)/(sin^2x+cos^2x)
分子分母除以cos^2x
=(2tanx+1+tan^2x+1)/(tan^2x+1)
=(2*2+1+2^2+1)/(2^2+1)
=10/5
=2

sinx/cosx = 2
sinx = 2 cosx
M = 4cos^2x+cos^2x+1 = 5cos^2x + 1 = sinn^2x+cos^2x + 1 = 2