求导y=arctan√(x^2-1)-(lnx/√(x^2-1))
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:13:26
xRr0M66ZK*q6Бd6°a7w ?o,{=wn{y13g1\l(NK3%c_ᘾAwhM9Lhǩv!`¾YS/RXIJ:6/d?M聙o'nhUH;7X{waGlL<=%=ܿ@6'/*T%,hS\#ULĕ'd%Eoj.xr{_"[";#oAU\oťϴǘYD)XpNXII+G2Ra!BW!~D@uR9P(jT DY\ƒ`3&I0XY]&T?Q
求导y=arctan√(x^2-1)-(lnx/√(x^2-1))
求导y=arctan√(x^2-1)-(lnx/√(x^2-1))
求导y=arctan√(x^2-1)-(lnx/√(x^2-1))
(arctanx)' = 1/(x² + 1)
(lnx)' = 1/x
(u/v)' = (u'v - uv')/v²
y' = [arctan√(x² - 1)]' - [lnx/√(x² - 1)]'
= [1/(x² - 1 + 1)][√(x² - 1)]' - {(1/x)√(x² - 1) - (lnx)[√(x² - 1)]'}/(x² - 1)
= (1/2)*2x/[x²√(x² - 1)] - {[√(x² - 1)/x] - (lnx)(1/2)(2x)/√(x² - 1)}/(x² - 1)
= 1/[x√(x² - 1)] - [√(x² - 1)/x]- (xlnx)/√(x² - 1)]/(x² - 1)
= 1/[x√(x² - 1)] - 1/[x√(x² - 1)] + xlnx/[(x² - 1)√(x² - 1)]
= xlnx/[(x² - 1)√(x² - 1)]
y=arctan√x求导
求导y=arctan[2x/(1-x^2)]
急等 求导 Y=ARCTAN x/1+x^2
y=arctan(1/x)求导
y=arctan(x/2)求导?
求导 y=(arctan x)^2
求导y=arctan√(x^2-1)-(lnx/√(x^2-1))
函数求导.y=arctan(x+1)/(x-1)
求导y=arctan(根号(1-3x))如 题、
ln(x^2+y^2)=arctan(y/x) 求导隐函数求导
arctan(1/x)求导
求导y=arctan(1-x^2) 要过程如题
arctan根号(x^2-1)求导,
方程arctan(y/x)=ln√(x²+y²)两边对x求导
y=xarcsin根号下x/(1+x)+arctan根号下x-根号2-根号x求导
求导:y=arctan(lnx)
y=arctan(lnx)求导~
隐函数求导 x=y+arctan y