已知2cosx+3sinx=(根号26)/2,求tan2x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 12:48:52
已知2cosx+3sinx=(根号26)/2,求tan2x
xQN0~Xv8B:y„ҨapL̰Š B}ClygU7X?.b7ʬIvo_GP mq=?{.5%XX:@ΆmdG'~>1aHmU4 wl yDDWXRlfp)n3SqچikH"}F呎,YNB hN[ɯe_-i⡸X(P,9hzhqUqҝ

已知2cosx+3sinx=(根号26)/2,求tan2x
已知2cosx+3sinx=(根号26)/2,求tan2x

已知2cosx+3sinx=(根号26)/2,求tan2x
2cosx+3sinx=(√26)/2,
(2/√13)cosx+(3/√13)sinx=(√2)/2.
设2/√13=siny,3/√13=cosy,则
sinycosx+cosysinx=(√2)/2,sin(x+y)=(√2)/2,x+y=π/4+2kπ,x=π/4-y+2kπ,
tanx=tan(π/4-y)=[tan(π/4)-tany]/[1+tan(π/4)tany]=(1-2/3)/(1+2/3)=1/5.
∴tan2x=2tanx/[1-(tanx)^2]=(2/5)/[1-(1/5)^2]=5/12.