已知a>b>0,求a^2+16/[b(a-b)]的最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 07:56:14
已知a>b>0,求a^2+16/[b(a-b)]的最小值.
x){}K tmlJ364ӏNHMҌ}>ٜ6y&HDv6HM7jj7QK&&&|c "YgÓK u.h1j!@h@d5u.53@qA} R قOiY!{Ɏ]0{''r *m:/>c\~qAb(<$

已知a>b>0,求a^2+16/[b(a-b)]的最小值.
已知a>b>0,求a^2+16/[b(a-b)]的最小值.

已知a>b>0,求a^2+16/[b(a-b)]的最小值.
b(a-b)=-(b-a/2)^2+a^2/4
ab-b^2=-(b-a/2)^2+a^2/4
且a>b>0
所以0≤ab-b^2≤a^2/4
所以16/(ab-b^2)≥64/a^2
所以a^2 +16/(ab-b^2)≥a^2+64/a^2≥2根号64=2*8=16
所以最小值为16
当b=a/2,且a=4,即a=4,b=2时,能取到最小值16