若实数x,y满足2x^2+y^2=4x,求S=x^2+y^2的值域.[0,4]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 02:33:54
xOO0ƿJLֱ} F⟨ф$#E! Ɩy+u-lJkqɇysjY;⽣ܯ2o="ʀK=bKf(DΕbS`);K 1ŪrdcPnʪ@Th^M]3 dj^+P9*cY֦1Yˆu65Ĉ+}`8Fyؘ$ LV|Ϻ:/Yg\~W}8|l|קS>lb!*SDc~]J
若实数x,y满足2x^2+y^2=4x,求S=x^2+y^2的值域.[0,4]
若实数x,y满足2x^2+y^2=4x,求S=x^2+y^2的值域.
[0,4]
若实数x,y满足2x^2+y^2=4x,求S=x^2+y^2的值域.[0,4]
y^2=-2x^2+4x>=0
x(x-2)
2x^2+y^2=4x
2(x-1)^2+y^2=2
可设x = cosa + 1, y = 根号2 * sina
S = (cosa + 1)^2 + 2 * (sina)^2
= (cosa)^2 + 2 * cosa + 1 + 2 * (1 - (cosa)^2)
= -(cosa)^2 + 2 * cosa + 3
= -(cosa - 1...
全部展开
2x^2+y^2=4x
2(x-1)^2+y^2=2
可设x = cosa + 1, y = 根号2 * sina
S = (cosa + 1)^2 + 2 * (sina)^2
= (cosa)^2 + 2 * cosa + 1 + 2 * (1 - (cosa)^2)
= -(cosa)^2 + 2 * cosa + 3
= -(cosa - 1)^2 + 4
-1<=cosa<=1
-2<=cosa-1<=0
0<=(cosa - 1)^2<=4
-4<=-(cosa - 1)^2<=0
0<=-(cosa - 1)^2+4<=4
所以答案是[0,4]
收起
y^2=-2x^2+4x>=0
x(x-2)<=0
0<=x<=2
x^2+y^2=x^2-2x^2+4x=-x^2+4x=-(x-2)^2+4
0<=x<=2,在x=2左边,是增函数
所以x=0,最小=0
x=2,最大=4
所以[0,4]