已知椭圆的方程为x2/ a2+y2/b2=1,与x轴正 半轴交于点A,O为坐 标原点,如果椭圆上 存在点M,已知椭圆的方程为x2/a2+y2/b2=1,与x轴正半轴交于点A,O为坐标原点,如果椭圆上存在点M,使角OMA=90度,求离心率

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:25:46
已知椭圆的方程为x2/ a2+y2/b2=1,与x轴正 半轴交于点A,O为坐 标原点,如果椭圆上 存在点M,已知椭圆的方程为x2/a2+y2/b2=1,与x轴正半轴交于点A,O为坐标原点,如果椭圆上存在点M,使角OMA=90度,求离心率
xSN@ U]=㤊PE8$m!)Iմ+(ITQRJg<3f/tlR n9{&@?I7ۨB*9}E6쮕PX[8Kg:=VӶ ${5NtUTZY[ jQ"S|ҍbIv\;&ϲCˤ?oo~/_9G K9* ži\r>G{ԏ}|On/|_<gj3 CC=}N4+2E~lxuP@n匠jL;pC3 )P-hJ0HNsGsFKԱKzcR :KиX<K)NwccϏA*fFa(!/`Ȧd%*^e]BnH"ɒHJ!ԃP ȽJR)棴H%[ o@ פ@PV(FdS#3y+v8HQpYtz{usa(洖9ۀ]VttA`~ nṉ;MVyI4hpaJj{l

已知椭圆的方程为x2/ a2+y2/b2=1,与x轴正 半轴交于点A,O为坐 标原点,如果椭圆上 存在点M,已知椭圆的方程为x2/a2+y2/b2=1,与x轴正半轴交于点A,O为坐标原点,如果椭圆上存在点M,使角OMA=90度,求离心率
已知椭圆的方程为x2/ a2+y2/b2=1,与x轴正 半轴交于点A,O为坐 标原点,如果椭圆上 存在点M,
已知椭圆的方程为x2/
a2+y2/b2=1,与x轴正
半轴交于点A,O为坐
标原点,如果椭圆上
存在点M,使角OMA=
90度,求离心率的取
值范围.
正确解法是:
(x-a/2)^2+y^2=a^4/2 (构建的圆的方程)
与椭圆方程联立
然后由题x1=a x2可以由韦达定理解出
0

已知椭圆的方程为x2/ a2+y2/b2=1,与x轴正 半轴交于点A,O为坐 标原点,如果椭圆上 存在点M,已知椭圆的方程为x2/a2+y2/b2=1,与x轴正半轴交于点A,O为坐标原点,如果椭圆上存在点M,使角OMA=90度,求离心率

如图所示的红色椭圆,就满足你的要求.虽然与小圆有交点但是此时的交点在顶点处,构不成三角形.

已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为 已知椭圆x2/a2+y2/b2的离心率为根号2/2,其焦点在圆x2+y2=1球椭圆方程 已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作 急已知双曲线x2/a2-y2/b2=1的离心率为根号6/2,椭圆x2/a2+y2/b2=1的离心率为 已知椭圆的方程为X2/A2+Y2/B2=1(a>b>0)求椭圆的离心率 焦点坐标 焦距 已知椭圆C:x2/a2+y2/b2=1(a>0,b>0)过点(1,2/3),且离心率为1/2.求椭圆的方程 已知椭圆x2/a2+y2/b2=1的离心率为1/2,两焦点之间的距离为4,求园的标准方程, 已知方程为x2+y2=9的园经过椭圆(x2/a2)+(y2/b2)=1(a>b>0)的两个焦点和两个顶点,则椭圆的长轴长等于 椭圆X2/a2+y2/b2=1在点(x0,y0)处的切线方程为xx0/a2+yy0/b2=1,为什么? 已知双曲线x2/a2-y2/b2=1的离心率为2,焦点与椭圆x2/25+y2/9=1相同,那么双曲线的焦点坐标为渐近线方程为 已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为2/3,且该椭圆上的点到右焦点的最大距离为5.1)求椭圆C方程 已知椭圆a2/X2+Y2/b2=1(a>b>0)的离心率e=根号3/2,连接椭圆的四个顶点得到的菱形的面积为4求椭圆方程 已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率√2/2,且椭圆上任意一点到到右焦点F的距离的最大值为√2+11.求椭圆方程 已知椭圆E:x2/a2+y2/b2=1(a,b>0)的焦点坐标为F1(-2,0),点M(-2,√2)在椭圆E上,求椭圆E的方程 已知点p(0,-1)椭圆c:x2/a2+y2/b2=1椭圆的左右焦点分别为f1f2若三角形面积为1,且a2,b2的等比中项为2根号41.求椭圆c的标准方程2.若椭圆c'上有A,B两点,使△PAB的重心为f1,求直线AB的方程 已知过点(1,0)的直线L与椭圆x2/a2+y2/b2=1(a>b>0且a2+b2>1)相交于P,Q两点,PQ的中点坐标为(a2/2,b2/2)且向量OP⊥向量OQ(O为坐标原点)⑴求直线L的方程⑵求证:1/a2+1/b2为定值 已知直线x+y-1=0经过椭圆x2/a2+y2/b2的顶点和焦点F 求此椭圆的标准方程 已知椭圆x2/a2+y2/b2=1(a>b>0)的一个焦点为(√6,0),离心率为√3/2,则该椭圆的方程为