函数f(x)=lg(√x2+1 –x)的奇偶性与单调性求详解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:48:09
函数f(x)=lg(√x2+1 –x)的奇偶性与单调性求详解
xVKOQ+4i08nڤ? MڅlHc,*DTPb+S'2ΰ/{g@p64&ܹ|Μ&!M5mҒ {%'/½|(Ma-G!kSJH47vaM~~_]8?~v<5;q;!<ިn 4[dm% @e0  @7EUY.;V̹e_ P@xZWuq$wG@i|Վkgj SE31B%SYlᣒ^v$# tl F$qe[5s Nk$^de0zR6.ğ"I7ʸ53Z픦Z22}xKo_υ^H>x;6vf6A'X\"hæ勄PC‚G"% tT!-_@JT v$4 0yt{B| d18-#x>=cv%Xvڈ ?

函数f(x)=lg(√x2+1 –x)的奇偶性与单调性求详解
函数f(x)=lg(√x2+1 –x)的奇偶性与单调性
求详解

函数f(x)=lg(√x2+1 –x)的奇偶性与单调性求详解
显然函数的定义域是R
f(-x)=lg((√(-x)^2+1)+x)
=lg(√x^2+1-x)(√(-x)^2+1)+x)/(√x^2+1-x)
=lg1/(√x^2+1-x)
=-lg(√x2+1 –x)=-f(x)
所以函数f(x)=lg(√x2+1 –x)是奇函数
任取x1,x2属于R,且x1

奇偶性只要看f(-x)等于多少
我想函数应该是lg(√(x^2+1) -x)
很显然f(-x)=lg(√(x^2+1) +x)= lg[1/(√(x^2+1) -x)]=-lg(√(x^2+1) -x)=-f(x)是奇函数
至于单调性,因为lg(√(x^2+1) -x)=lg[1/(√(x^2+1) +x)] = -lg(√(x^2+1) +x)
显然,当x增加时√...

全部展开

奇偶性只要看f(-x)等于多少
我想函数应该是lg(√(x^2+1) -x)
很显然f(-x)=lg(√(x^2+1) +x)= lg[1/(√(x^2+1) -x)]=-lg(√(x^2+1) -x)=-f(x)是奇函数
至于单调性,因为lg(√(x^2+1) -x)=lg[1/(√(x^2+1) +x)] = -lg(√(x^2+1) +x)
显然,当x增加时√(x^2+1) +x也单调增加,所以lg√(x^2+1) +x单调增加,所以f(x)=-lg(√(x^2+1) +x)单调减

收起

一、判断函数奇偶性需要两个条件:
1、定义域关于原点对称;2、满足f(-x)=f(x)的话是偶函数,满足f(-x)=-f(x)的话就是奇函数。
这个题目的问题是:你在计算f(-x)时,无法解决,或者说看不出到底是等于f(x)呢还是等于-f(x)
方法:奇函数的判断除了可以用f(-x)=-f(x)来判断外,还可以用其等价的f(-x)+f(x)=0来实施。
此函数定义域...

全部展开

一、判断函数奇偶性需要两个条件:
1、定义域关于原点对称;2、满足f(-x)=f(x)的话是偶函数,满足f(-x)=-f(x)的话就是奇函数。
这个题目的问题是:你在计算f(-x)时,无法解决,或者说看不出到底是等于f(x)呢还是等于-f(x)
方法:奇函数的判断除了可以用f(-x)=-f(x)来判断外,还可以用其等价的f(-x)+f(x)=0来实施。
此函数定义域是R,且f(-x)+f(x)=lg【M】+lg【N】=lg【M×N】,你发现M×N=1,即有:
f(-x)+f(x)=0,此函数是奇函数。
二、将原函数的真数分子有理化,即:f(x)=lg[1/√(x²+1)+x],由于是奇数,那只要看一下x>0时的单调性就可以了。。真数的分母递增,则真数递减,从而f(x)在x>0时递减。

收起