A(1,0),直线l是x=3,动点M到A的距离和M到l的距离的和是4 (1)求M的轨迹T (2)过A做倾斜角是n的直线已知点A(1,0)和直线l:x=3,动点M到A的距离和M到l的距离的和是4(1)求M的轨迹T(2)过A做倾斜角是n的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 13:52:50
A(1,0),直线l是x=3,动点M到A的距离和M到l的距离的和是4 (1)求M的轨迹T (2)过A做倾斜角是n的直线已知点A(1,0)和直线l:x=3,动点M到A的距离和M到l的距离的和是4(1)求M的轨迹T(2)过A做倾斜角是n的
A(1,0),直线l是x=3,动点M到A的距离和M到l的距离的和是4 (1)求M的轨迹T (2)过A做倾斜角是n的直线
已知点A(1,0)和直线l:x=3,动点M到A的距离和M到l的距离的和是4
(1)求M的轨迹T
(2)过A做倾斜角是n的直线,和T交点是P和Q,设d=|PQ|.求d=f(n)的解析式
A(1,0),直线l是x=3,动点M到A的距离和M到l的距离的和是4 (1)求M的轨迹T (2)过A做倾斜角是n的直线已知点A(1,0)和直线l:x=3,动点M到A的距离和M到l的距离的和是4(1)求M的轨迹T(2)过A做倾斜角是n的
(1)设M(x,y)
∴ √[(x-1)²+y²]+|x-3|=4
① x≥3时,化简得:(x-1)²+y²=(7-x)² ,即 y²=-12x+48
②x<3时,化简得:(x-1)²+y²=(1+x)²,即 y²=4x
∴ M的轨迹T是两段抛物线.
如图,是个封闭区域,(去掉多余部分)
公共点是(3,2√3),(3,-2√3)
(2)直线方程y=(x-1)tann(有点别扭,换个字母吧)
直线方程y=(x-1)tanα
(一)当π/3≤α≤2π/3 时,直线和抛物线(紫色部分)有两个交点.
F(1,0)是焦点
联立方程组
(x-1)²tan²α=4x
∴ tan²α*x²-(2tan²α+4)x+tan²α=1
∴ xP+xQ=(2tan²α+4)/tan²α
∴ |PQ|=2+(2tan²α+4)/tan²α=4+4/tan²α
(二)0≤α≤π/3或2π/3≤α<π
直线与抛物线(紫色部分和红色部分各有一个交点)
设直线的参数方程是 x=1+tcosα,y=tsinα
与y²=4x,联立
得到 t²sin²α-4tcosα-4=0
得到 t=(2cosα±2)/sin²α
与 y²=-12x+48联立
得到 t²sin²α+12tcosα-36=0
得到t= (-6cosα±6)/sin²α
若 0≤α≤π/3, t1=(2cosα-2)/sin²α,t2=(-6cosα+6)/sin²α
∴ |PQ|=|8-8cosα|/sin²α=8/(1+cosα)
同理 2π/3≤α<π, |PQ|=|8-8cosα|/sin²α=8/(1+cosα)
综上,
|PQ|={4+4/tan²α , π/3≤α≤2π/3
={8/(1+cosα), 0≤α≤π/3或2π/3≤α<π
第一问
设M(x,y)
x≥3时,(x-3)+根号[(x-1)^2+y^2]=4;
x<3时,(3-x)+根号[(x-1)^2+y^2]=4;