已知:如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AB 求证:∠AOB=∠OCD

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 14:31:41
已知:如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AB 求证:∠AOB=∠OCD
xn@_Ŋ[uP\}d@S!q hQZKQS%h )]7NO}q$E꥾gg?ݙH|] g';lv{_UM7BvVfDm? `3j0jkc}b}k Ek>Egy!MS2Σ'3JLVs,URUe:.+mVgs܂zҊ"KJ)#$xHH<"P0Mc-H- ʨ@ <Hels .n"݋Y) ,$H/ydM %&* dbmytU$I5PJl(aAkaU׵H)̉3i "i5\s%}~ލެѭ.0 b U70VC?P5EЮ;i~NkK跠x,JXR*V=ywN07qZ4:-Ekl$ŗgMC;~

已知:如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AB 求证:∠AOB=∠OCD
已知:如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AB 求证:∠AOB=∠OCD

已知:如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AB 求证:∠AOB=∠OCD
∵平行四边形ABCD
∴∠OCD=∠BAC,OB=OD=二分之一BD
∵BD=2AB
∴OB=AB
∴∠AOB=∠BAC
∵∠OCD=∠BAC
∴∠AOB=∠OCD

平行四边形定理可得 角BAC=角ACD BO=OD 又因为AB=2BD 得AB=BO 等腰三角形定理 角BAO=角BOA 所以角AOB=角OCD

因为BD等于两倍OD所以,OD=AB,因为,AB=DC,所以,OD=DC,所以,角DOC=角DCO。因为,角AOB=角DOC。所以,角AOB=角DCO

∵平行四边形ABCD
∴BD=2DO ,AB=CD
∵BD=2AB
∴DO=AB
∵AB=CD
∴DO=CD
∴∠OCD=∠DOC
∵∠AOB与∠DOC是对顶角
∴∠AOB=∠DOC
∴∠AOB=∠OCD
望采纳