求微分方程y"+2y'=x^2+1满足y(0)=1,y'(0)=-2的特解

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 15:27:38
求微分方程y
xT]OA+ e]|ЪJ1>DbDj+mS]jxDow=sw&7[-RmVM:W&:Oo~k[>2c8Foo'gD\^55w퓟L; fuܯ$٠"eVk>~>V_꺄yU?&i\Ih,CSqc+ `wh u4b?QIH;C~7FrH KlfA~ ω=D&_(sr|i<_G} (ιraj'ܦ,mt.pYTax@xi%AX<,i+X z'ضPAVT"!nWd(NG  " lP s0w -9V"Jd&pq~xjs7~$1XIɈs!%=d^p|-vAk8~6zgoj݅F 뵷F~ggǕo[

求微分方程y"+2y'=x^2+1满足y(0)=1,y'(0)=-2的特解
求微分方程y"+2y'=x^2+1满足y(0)=1,y'(0)=-2的特解

求微分方程y"+2y'=x^2+1满足y(0)=1,y'(0)=-2的特解
y"+2y'=0的,特征根为0,-2
0是单根,设特解y*=x(ax^2+bx+c),y*‘=3ax^2+2bx+c,y*‘’=6ax+2b,代入求得:
a=1/6,b=-1/4,c=3/4
通解为:y=C1+C2e^(-2x)+x(x^2/6-x/4+3/4)
y'=-2C2e^(-2x)+x^2/3-x/2+3/4
由:y(0)=1,y'(0)=-2得:C1+C2=1,-2=-2C2+3/4
C2=11/8 C1=-3/8
y=-3/8+(11/8)e^(-2x)+x(x^2/6-x/4+3/4)

这是解这个方程的详细过程,你可以点击图片,查看大图!

收起