设函数f(x)二阶可导 有f''(x)>0,f(0)=0证明F(x)=f(x)/x,x≠0,F(x)=f(0),x=0是单调增函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:22:31
设函数f(x)二阶可导 有f''(x)>0,f(0)=0证明F(x)=f(x)/x,x≠0,F(x)=f(0),x=0是单调增函数
x){nϦnHӨ|mO?]Gٜ4uuNflA+t*u.0ЁhTnh{wruϧl|lgs?ɎO<]78P6d.ȡ  :O[5$فB[

设函数f(x)二阶可导 有f''(x)>0,f(0)=0证明F(x)=f(x)/x,x≠0,F(x)=f(0),x=0是单调增函数
设函数f(x)二阶可导 有f''(x)>0,f(0)=0证明F(x)=f(x)/x,x≠0,F(x)=f(0),x=0是单调增函数

设函数f(x)二阶可导 有f''(x)>0,f(0)=0证明F(x)=f(x)/x,x≠0,F(x)=f(0),x=0是单调增函数
只要证明:F ‘(x)=(xf '(x) -f(x))/x² >0 即xf '(x) -f(x)>0 (①)
1、.当x>0,由拉格朗日中值定理得,f '(ξ1)=[f(x)-f(0)] / (x-0) ,其中0