已知函数f(x)=-x2+8x g(x)=6lnX+m是否存在实数X,使得y=f(x)的图像与y=g(x)的图像有且只有三个不同的交点,若存在,求出m的取值范围,若不存在,说明理由

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:51:01
已知函数f(x)=-x2+8x g(x)=6lnX+m是否存在实数X,使得y=f(x)的图像与y=g(x)的图像有且只有三个不同的交点,若存在,求出m的取值范围,若不存在,说明理由
xQN@wBI)$;XBXXBt3X( &$VӲ…KMfqsfνG&ŽCiEoKq|u, jO6g:02bR&OX7s:+hhS픉Sk$ vFĩ@d蹅wٻ/tVZg=9dN[v3\}3(لCGa%C1Y4' |omof8Ybd`[!.Q\*dr1izC6O:dL-DZΓ>! Lg4ѰNK*vۅ _Ŕ

已知函数f(x)=-x2+8x g(x)=6lnX+m是否存在实数X,使得y=f(x)的图像与y=g(x)的图像有且只有三个不同的交点,若存在,求出m的取值范围,若不存在,说明理由
已知函数f(x)=-x2+8x g(x)=6lnX+m
是否存在实数X,使得y=f(x)的图像与y=g(x)的图像有且只有三个不同的交点,若存在,求出m的取值范围,若不存在,说明理由

已知函数f(x)=-x2+8x g(x)=6lnX+m是否存在实数X,使得y=f(x)的图像与y=g(x)的图像有且只有三个不同的交点,若存在,求出m的取值范围,若不存在,说明理由
f(x)=g(x)
x^2-8x+6lnx+m=0
另h(x)=x^2-8x+6lnx
问题转化为y=h(x)与y=-m有且只有三个交点
h'(x)=2x-8+6/x
另h'(x)=0,x=1,3
h(x)有极大值h(1)=-7,极小值h(3)=1+6ln3
所以-7-1-6ln3

求交点,即为:-x2+8x=6lnX+m的解