已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)1.求数列{an }的通项公式2.若bn=n/an,求数列{bn }的前n项的和Sn.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 17:46:49
已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)1.求数列{an }的通项公式2.若bn=n/an,求数列{bn }的前n项的和Sn.
xՒN@_cR]N\`BhLhRRhBHzP &(Q7|8RbM;3kV~~9JUߓPO^ӃLHD]Mۦp @\a_|taқ`Ty9nGVVF CK(L@:?Ako446޿8Q:OTuzfA:hg a0^ЛE؟T buJ3 `tuN&(fttLG#55Eb;@C K7斾jv:Gp ݦE>cǩ

已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)1.求数列{an }的通项公式2.若bn=n/an,求数列{bn }的前n项的和Sn.
已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)
1.求数列{an }的通项公式
2.若bn=n/an,求数列{bn }的前n项的和Sn.

已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)1.求数列{an }的通项公式2.若bn=n/an,求数列{bn }的前n项的和Sn.
1、∵a1+2a2+...+2^(n-1)*an=n/2 ①
a1+2a2+...+2^n*a(n+1)=(n+1)/2 ②
②-①得2^n*a(n+1)=1/2,∴a(n+1)=1/(2^(n+1))
∴an=1/2^n
2、∴bn=n*2^n
Sn=1*2+2*2^2+……+n*2^n ③
2Sn= 1*2^2+……+(n-1)*2^n+n*2^(n+1) ④
③-④得-Sn=2+2^2+……+2^n-n*2^(n+1)=2^(n+1)-2-n*2^(n+1)
∴Sn=(n-1)*2^(n+1)+2