已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)1.求数列{an }的通项公式2.若bn=n/an,求数列{bn }的前n项的和Sn.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 17:46:49
xՒN@_cR]N\`BhLhRRhBHzP&(Q7|8RbM;3kV~~9JUߓPO^ӃLHD]Mۦp@\a_|taқ`Ty9nGVVF
CK(L@:?Ako4468Q:OTuzfA:hg
a0^ЛE؟T
buJ3`tuN&(fttLG#55Eb;@C K7斾jv:Gp
ݦE>cǩ
已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)1.求数列{an }的通项公式2.若bn=n/an,求数列{bn }的前n项的和Sn.
已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)
1.求数列{an }的通项公式
2.若bn=n/an,求数列{bn }的前n项的和Sn.
已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)1.求数列{an }的通项公式2.若bn=n/an,求数列{bn }的前n项的和Sn.
1、∵a1+2a2+...+2^(n-1)*an=n/2 ①
a1+2a2+...+2^n*a(n+1)=(n+1)/2 ②
②-①得2^n*a(n+1)=1/2,∴a(n+1)=1/(2^(n+1))
∴an=1/2^n
2、∴bn=n*2^n
Sn=1*2+2*2^2+……+n*2^n ③
2Sn= 1*2^2+……+(n-1)*2^n+n*2^(n+1) ④
③-④得-Sn=2+2^2+……+2^n-n*2^(n+1)=2^(n+1)-2-n*2^(n+1)
∴Sn=(n-1)*2^(n+1)+2
已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an
已知数列{an}满足:a1+a2+a3+.+an=n^2,求数列{an}的通项an.
已知数列an'满足a1=1/2,a1+a2+a3+...+an=n^2an,求通项公式
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an
已知数列满足a1=1/2,an+1=2an/(an+1),求a1,a2已知数列满足a1=1/2,a(n+1)=2an/(an+1),求a1,a2;证明0
数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an
已知数列an满足a1=0 a2=1 an=(An-1+An-2)/2 求liman
已知数列an满足a1=0 a2=1 an=(An-1+An-2)/2 求liman
几个数列问题.已知数列{an} a1=1,an+1=an/(1+n^2*an) 求an 已知数列{an} 满足a1=1 a1*a2*a3.*an=n^2 求an
已知数列an满足an=1+2+...n,且(1/a1)+(1/a2)+...(1/an)
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1)
已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式
已知递增数列{an}满足a1=1,(2an+1)=an+(an+2),且a1,a2,a4成等比数列.求an
已知数列{an}满足:a1=1,且an-an-1=2n,求(1)a2,a3,a4.(2)求数列{an}的通项an
关于数列极限的已知数列an满足a1=0 a2=1 an=(an-1+an-2)/2 求lim(n->无穷)an
已知数列(an)满足a1=1,an+1=2an/an+2(n∈N*) 求a2,a3,a4,a5 猜想数列(an)的通项公
(1)数列{an}中,a1=1,a2=-3,a(n+1)=an+a(n+2),则a2005=____(2)已知数列{an}满足a1=1,a1×a2×a3…an=n^2,求an.
已知数列an满足a1+2a2+3a3+……+nan=2^n,求an