1.已知抛物线y=x^2-2ax+2a+b在x轴上截得的线段长为3,并且他的顶点坐标满足关系式y=-x^2,求a与 b的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:43:51
1.已知抛物线y=x^2-2ax+2a+b在x轴上截得的线段长为3,并且他的顶点坐标满足关系式y=-x^2,求a与 b的值
xPNPmzKmo?dMIXQX GDuaZZNo/ՙǙsfƏԏS5ӃW/;"[~xx/ }¶!b6pԠ'i]- ]cmj@w5֗e+iĢ`F8pQfəGpT_D

1.已知抛物线y=x^2-2ax+2a+b在x轴上截得的线段长为3,并且他的顶点坐标满足关系式y=-x^2,求a与 b的值
1.已知抛物线y=x^2-2ax+2a+b在x轴上截得的线段长为3,并且他的顶点坐标满足关系式y=-x^2,求a与 b的值

1.已知抛物线y=x^2-2ax+2a+b在x轴上截得的线段长为3,并且他的顶点坐标满足关系式y=-x^2,求a与 b的值
y=x^2-2ax+2a+b=(x-a)^2+2a-a^2+b
所以顶点坐标为(a,2a-a^2+b)
所以2a-a^2+b=-a^2,b=-2a
所以y=x^2-2ax与x轴上交点为(0,0),(2a,0)
|2a|=3,
所以a=3/2,b=-3
a=-3/2,b=3