求值域 f(x)=2sin^2(x)-cos^2(x)+2sinxcosx-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:27:23
求值域 f(x)=2sin^2(x)-cos^2(x)+2sinxcosx-1
x){iÞ+iThgY`6Hȫ5I*'Q~ 9I!BJ}#Z (`T 2B1T(PĀ0bUhh%n{c-Pu-[!<[Z alh] tX<;P

求值域 f(x)=2sin^2(x)-cos^2(x)+2sinxcosx-1
求值域 f(x)=2sin^2(x)-cos^2(x)+2sinxcosx-1

求值域 f(x)=2sin^2(x)-cos^2(x)+2sinxcosx-1
f(x)=2sin^2(x)-cos^2(x)+2sinxcosx-1
=2sin^2(x)-1-cos^2(x)+1/2+2sinxcosx-1/2
=1/2cos2x+sin2x-1/2
=√5/2[1/√5cos2x+2/√5sin2x]-1/2
=√5/2cos(2x+t)-1/2
其中sint=1/√5,cost=2/√5
因此f(x)的值域是[-√5/2-1/2,√5/2-1/2]