中值定理证明函数f(x)在【0,1】连续,在(0,1)可导,f(0)=0,且在(0,1)内f(x)!=0.证明至少存在一点ξ∈(0,1)使得3f'(ξ)/f(ξ) = 4f'(1-ξ)/f(1-ξ)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 19:16:13
中值定理证明函数f(x)在【0,1】连续,在(0,1)可导,f(0)=0,且在(0,1)内f(x)!=0.证明至少存在一点ξ∈(0,1)使得3f'(ξ)/f(ξ) = 4f'(1-ξ)/f(1-ξ)
xSN@~zZʑ"=!z!1$(1"$P)?B xm+8EEf

中值定理证明函数f(x)在【0,1】连续,在(0,1)可导,f(0)=0,且在(0,1)内f(x)!=0.证明至少存在一点ξ∈(0,1)使得3f'(ξ)/f(ξ) = 4f'(1-ξ)/f(1-ξ)
中值定理证明
函数f(x)在【0,1】连续,在(0,1)可导,f(0)=0,且在(0,1)内f(x)!=0.证明至少存在一点ξ∈(0,1)使得
3f'(ξ)/f(ξ) = 4f'(1-ξ)/f(1-ξ)

中值定理证明函数f(x)在【0,1】连续,在(0,1)可导,f(0)=0,且在(0,1)内f(x)!=0.证明至少存在一点ξ∈(0,1)使得3f'(ξ)/f(ξ) = 4f'(1-ξ)/f(1-ξ)
设g(x) = [f(x)]^3[f(1-x)]^4
则,g(x)在[0,1]连续,在(0,1)可导.
g(0) = [f(0)]^3[f(1)]^4 = 0,
g(1) = [f(1)]^3[f(0)]^4 = 0 = g(0).
g'(x) = 3[f(x)]^2f'(x)[f(1-x)]^4 + 4[f(x)]^3[f(1-x)]^3f'(1-x)(-1)
= [f(x)]^2[f(1-x)]^3{3f'(x)f(1-x) - 4f(x)f'(1-x)}
由罗尔中值定理,至少存在一点ξ∈(0,1)使得
g'(ξ)=[f(ξ)]^2[f(1-ξ)]^3{3f'(ξ)f(1-ξ) - 4f(ξ)f'(1-ξ)} = 0,
但由于,在(0,1)内f(x)!=0.
因此,[f(ξ)]^2[f(1-ξ)]^3 不等于0,
故,必有,
3f'(ξ)f(1-ξ) - 4f(ξ)f'(1-ξ) = 0,
成立.
也就是,
3f'(ξ)f(1-ξ) = 4f(ξ)f'(1-ξ),
因此,有
3f'(ξ)/f(ξ) = 4f'(1-ξ)/f(1-ξ).
所以命题得证.

一道微分中值定理题目若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ, 一个关于中值定理的题,设函数f(x)在[1,e]上连续,0 一道关于微分中值定理的证明题求解是一道关于微分中值定理的证明题,题目:设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+ f(1)+ f(2)=3,f(3)=1,试证必存在ξ在(0,3)内,使f(ξ)=0.哪位大 微分中值定理证明问题已知函数f(x)在[0,1]上连续,在(0,1)上可导,f(0)=1,求证:在(0,1)内至少存在一点c,使得f'(c)=-f(c)/c 问一道关于微分中值定理的数学题设函数f(x)在[0,1]上连续,在区间(0,1)上可导,且有f(1)=2f(0),证明在(0,1)内至少存在一点m,使得(1+m)f'(m)=f(m)成立.要用微分中值定理来做, 中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(...中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(a)=2a[f(a)-f(0)] 求解两道高数中值定理题第一题:设函数f(x)在区间[a,b]上连续(a>0),在(a,b)上可微,且f'(x)≠0.证明存在ξ,η∈(a,b),使得f'(ξ)=[(a+b)/2η]f'(η).第二题:设函数f(x)在区间(0,1)上连续,在(0,1)内可导,试证 【中值定理证明题】设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)f(b)>0,f(a)f((a+b)/2) 求函数分f(x)=x^2 在区间[0,1]上满足拉格朗日中值定理的中值 罗尔中值定理的题目函数f(x)=x³在区间[0,1]是否连续,是否可导?最好有过程. [微积分][微分中值定理][证明题]设函数f(x)在[0,1]上连续,在(0,1)上可导,且有f(1)=2f(0).证明:在(0,1)上至少存在一点x,使得(1+x) f ' (x) = f(x) 中值定理证明函数f(x)在【0,1】连续,在(0,1)可导,f(0)=0,且在(0,1)内f(x)!=0.证明至少存在一点ξ∈(0,1)使得3f'(ξ)/f(ξ) = 4f'(1-ξ)/f(1-ξ) 高数证明题,关于中值定理设函数f(x)在[1,2]上连续,在(1,2) 内可导,且f(2)=0,F(x)=(x-1)f(x),证明:至少存在一点ξ∈(1,2)使得F'(ξ)=0. 证明题求思路,是否要用到拉格朗日中值定理?设任意函数f(x)在闭区间[a,b]上连续,且a 两道微分中值定理题1,下面函数 f(x) F(x) 在区间[-1,1] 哪个满足罗尔定理 ,F(x) f(x) F(x) 在区间连续,端点值相同 所以如何证明他们在区间可导f(x) = x * sin(1/x) (x不等于0) ,f(x) = 0 (x等于0)F(x) = (x^2 )*si 设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ∈(0,1)使得f(ξ)+f‘'(ξ)=e^ξ[f(1)e-f(0)]考虑函数F(x)=e^xf(x)在[0,1]上的拉格朗日中值定理设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ∈(0,1)使得f(ξ)+f'(ξ) 一道关于微积分中值定理那部分的证明题~其实挺简单的~拜托啦~已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:在(0,1)内存在一点C,使得f'(c)=-f(c)/c. 应该不难~不过我是证明无能…拜 拉格朗日中值定理的问题证明拉格朗日中值定理要设一个辅助函数g(x)=[(f(b)-f(a))]/(b-a)×(x-a)+f(a)-f(x),f(x)在[a,b]连续,在(a,b)可导.那么,为什么g(x)也是在[a,b]连续,在(a,b)可导呢?