lim n趋向于无穷(1+e^n+派^n)^1/n,已经知道是用夹逼准则,请问怎么用
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 12:41:38
xNP_;[iڅP $M6w@
`Ӿ!
oxE6ğ>LA6MeT|o#
p
@qnFag4by#:d$;#FQYHf{v1#=ά/m1CB͚<@r4J)Ȕ}cEޒ&Mm v0'oiS3Ppĺx!xuM;۬T5`"OQfA_xBw&H0h;˃lP?j83#HF(_@Ev&/x֢f(ݽߦ8gMsyiTܘsG;$ b9e¢_` &
lim n趋向于无穷(1+e^n+派^n)^1/n,已经知道是用夹逼准则,请问怎么用
lim n趋向于无穷(1+e^n+派^n)^1/n,已经知道是用夹逼准则,请问怎么用
lim n趋向于无穷(1+e^n+派^n)^1/n,已经知道是用夹逼准则,请问怎么用
这个极限可以直接求,先进行如下变换:
(1+e^n+pi^n)^(1/n) = e^(ln((1+e^n+pi^n)^(1/n)))
= e^((1/n)*ln((1+e^n+pi^n))
然后,求下面极限:
lim_(n->+infty) (1/n)*ln((1+e^n+pi^n)
= lim_(n->+infty) (e^n+pi^n*ln(pi))/(1+e^n+pi^n) (L'Hostipal法则)
= ln(pi) (分式上下同除pi^n)
由于f(x)=e^x在实数上连续,我们得到:
lim_(n->+infty) e^((1/n)*ln((1+e^n+pi^n))
= e^(lim_(n->+infty) (1/n)*ln((1+e^n+pi^n))
= e^(ln(pi))
= pi
注:+infty表示正无穷,pi表示圆周率
lim n趋向于无穷(1+e^n+派^n)^1/n,已经知道是用夹逼准则,请问怎么用
lim n趋向于无穷 n[((n+1)/n)^n-e]
lim(n趋向于无穷)(1-e^(1/n))sinn
lim n[e2-(1+1/n)^2n],当n趋向于无穷答案等于e^2
lim n 趋向于正无穷的时候sin(派/n)是多少
求lim n趋向于无穷 n(n^1/n -1)/ln n
lim根号n*n+n除以n+1=?(档n趋向于无穷)
lim(n/(n^2+1)+...+n/(n^2+n))x趋向于无穷 求解答过程~
判断极限是否存在lim [n+(-1)^n]/n n趋向于无穷 lim |x|/x x趋向于0
求lim(n趋向于正无穷)(x^n)/n!
lim(2^n+3^n)^1
(n趋向无穷)
lim n((1+n)的n次-e) 等于多少 n趋向无穷
求极限:Lim(1+1/n-1/n^2)^n n趋向于正无穷
求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n
lim x趋向于无穷 (2^n+1+3^n+1)/(2^n+3^n)=
求极限lim(n趋向于无穷)(n+1)(根号下(n^2+1)-n)
求lim趋向于无穷3^n+(-2)^n/3^(n+1)+(-2)^(n+1)
求极限lim n趋向于无穷(1/n)*√(n+1)(n+2)⋯(n+n)