lim n趋向于无穷(1+e^n+派^n)^1/n,已经知道是用夹逼准则,请问怎么用

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 12:41:38
lim n趋向于无穷(1+e^n+派^n)^1/n,已经知道是用夹逼准则,请问怎么用
xNP_;[iڅP $M6w@ `Ӿ! oxE6ğ>LA6MeT|o# p @qnFag4by#:d$;#FQYHf{v1#=ά/m1CB͚<@r4J)Ȕ}cEޒ&Mm v0'oiS3Ppĺx!xuM;۬T5`"OQfA_xBw&H0h;˃lP?j83#HF(_@Ev&/x֢f(ݽߦ8gMsyiTܘ֋sG;$ b9e¢_` &

lim n趋向于无穷(1+e^n+派^n)^1/n,已经知道是用夹逼准则,请问怎么用
lim n趋向于无穷(1+e^n+派^n)^1/n,已经知道是用夹逼准则,请问怎么用

lim n趋向于无穷(1+e^n+派^n)^1/n,已经知道是用夹逼准则,请问怎么用
这个极限可以直接求,先进行如下变换:
(1+e^n+pi^n)^(1/n) = e^(ln((1+e^n+pi^n)^(1/n)))
= e^((1/n)*ln((1+e^n+pi^n))
然后,求下面极限:
lim_(n->+infty) (1/n)*ln((1+e^n+pi^n)
= lim_(n->+infty) (e^n+pi^n*ln(pi))/(1+e^n+pi^n) (L'Hostipal法则)
= ln(pi) (分式上下同除pi^n)
由于f(x)=e^x在实数上连续,我们得到:
lim_(n->+infty) e^((1/n)*ln((1+e^n+pi^n))
= e^(lim_(n->+infty) (1/n)*ln((1+e^n+pi^n))
= e^(ln(pi))
= pi
注:+infty表示正无穷,pi表示圆周率