高数,如何证明级数∑f(n){Q}/t(n){P}与级数∑1/n^(P-Q)有同样的收敛性?其中Q和P是函数中n的最大次幂.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:35:17
高数,如何证明级数∑f(n){Q}/t(n){P}与级数∑1/n^(P-Q)有同样的收敛性?其中Q和P是函数中n的最大次幂.
x){zƳt.kzwf=ߵ(cbFfu`~ }!elN =l>ٔmϦ~ְi';>l{y Es.Yl§;l v6"ЬQxcɓ.rΧ{ڞNmyt@^y߆SV`/<[?žf=Ov~gVNfn4p`նU0uځP٧;v{if4} U.y7P% t?Jy($ف"v

高数,如何证明级数∑f(n){Q}/t(n){P}与级数∑1/n^(P-Q)有同样的收敛性?其中Q和P是函数中n的最大次幂.
高数,如何证明级数∑f(n){Q}/t(n){P}与级数∑1/n^(P-Q)有同样的收敛性?其中Q和P是函数中n的最大次幂.

高数,如何证明级数∑f(n){Q}/t(n){P}与级数∑1/n^(P-Q)有同样的收敛性?其中Q和P是函数中n的最大次幂.
f(n){Q}/t(n){P} 是两个多项式的商,分子Q次,分母P次,现用级数∑1/n^(P-Q)进行比较
于是:lim[f(n){Q}/t(n){P}]/[1/n^(P-Q)]
=lim[f(n){Q+P}/t(n){P+Q}]
=常数(即两个多项式最高次幂的系数的商)
故级数∑f(n){Q}/t(n){P}与级数∑1/n^(P-Q)有同样的收敛性