通分 1/x²-4与x/4-2x x/(x-1)²与1/x²-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:38:06
x){0iG~ɓ}&F
0BMR>zl(&`[CaFF#}#4!fdlu+
a\ͶqF@mRyGCB`*4Pİ:
(^D>hbG 1{ ={(
通分 1/x²-4与x/4-2x x/(x-1)²与1/x²-1
通分 1/x²-4与x/4-2x x/(x-1)²与1/x²-1
通分 1/x²-4与x/4-2x x/(x-1)²与1/x²-1
1/x²-4与x/4-2x
1/x²-4
=1/(x-2)(x+2)
=2/2(x-2)(x+2)
x/4-2x
=-x/2(x-2)
=-x(x+2)/2(x-2)(x+2)
=(-x^2-2x)/2(x-2)(x+2)
x/(x-1)²与1/x²-1
x/(x-1)²
=x/(x-1)(x-1)
=x(x+1)/(x-1)(x-1)(x+1)
=(x^2+x)/(x-1)(x-1)(x+1)
1/x²-1
=1/(x-1)(x+1)
=(x-1)/(x-1)(x-1)(x+1)