设f(n)=1+1/2+1/3...+1/n,求证n+f(1)+f(2)+...+f(n-1)=nf(n)(n大于等于2,n属于正整数)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 20:01:36
设f(n)=1+1/2+1/3...+1/n,求证n+f(1)+f(2)+...+f(n-1)=nf(n)(n大于等于2,n属于正整数)
x;0 (ӵ]`hUpD,&^ J`ӀP%F?/'ʒz(b40r1c;Dz h!B"FSx.S zfʃ)wz}&*K?݅5bpv\j|I"N ~;$')ւ$ȇB/)JQd^@ :G6eif[ɣc

设f(n)=1+1/2+1/3...+1/n,求证n+f(1)+f(2)+...+f(n-1)=nf(n)(n大于等于2,n属于正整数)
设f(n)=1+1/2+1/3...+1/n,求证n+f(1)+f(2)+...+f(n-1)=nf(n)(n大于等于2,n属于正整数)

设f(n)=1+1/2+1/3...+1/n,求证n+f(1)+f(2)+...+f(n-1)=nf(n)(n大于等于2,n属于正整数)
f(1)=1
f(2)=1+1/2
f(n-1)=1+1/2+……+1/(n-1)
所以
n+f(1)+f(2)+...+f(n-1)=n+n-1+(n-2)/2+(n-3)/3+……+(n-n+1)/(n-1)
=n+n/1-1+n/2-1+n/3-1+……+n/(n-1)-1
=n-(n-1)+n/1+n/2+n/3+……+n/(n-1)
=n/1+n/2+n/3+……+n/(n-1)+n/n
=n(1/1+1/2+1/3+……+1/(n-1)+1/n)=nf(n)