线代 矩阵设A=1 2 -2 ,B为三阶非零矩阵,且AB=O,求t.4 t 3 3 -1 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 01:48:19
线代 矩阵设A=1 2 -2 ,B为三阶非零矩阵,且AB=O,求t.4 t 3 3 -1 1
xMN@2i1l&<!(@ 7C$TWp:&f>;cT-}#`/y]&P4F8&2'28؎y [=(( 㴦ƉʟBEժeݴ'@hcL>]MyhgՓ0DBě36 IM۸?/8guY<)\$ۑ4\Il|đ-V[EҹSlJ^^%mmLYE/t.sܠM&=I H4ɌߐpDMH-~E,'q\ASJ:`*hio5V

线代 矩阵设A=1 2 -2 ,B为三阶非零矩阵,且AB=O,求t.4 t 3 3 -1 1
线代 矩阵
设A=1 2 -2 ,B为三阶非零矩阵,且AB=O,求t.
4 t 3
3 -1 1

线代 矩阵设A=1 2 -2 ,B为三阶非零矩阵,且AB=O,求t.4 t 3 3 -1 1
AB=O;B非零,意思是A不满秩,|A|=0

固然可以用行列式求,但是用行列式会不会有点复杂
r(AB)=0
所以r(A)+r(B)<=n
r(B)>=1 B非零
则A不满秩
所以A的行向量线性相关
即(4,t,3)可用(1,2,-2)和(3,-1,1)线性表出
易得:
(4,t,3)=-5/7*(1,2,-2)+11/7*(3,-1,1)
所以t=-5*2/7-11/7=-3
t=-3