算个广义积分被积函数: f(x)=sin(z x)sin(w x)/x积分区间:(0,+无穷)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:25:23
算个广义积分被积函数: f(x)=sin(z x)sin(w x)/x积分区间:(0,+无穷)
xSok@*-!IU{ 26a0D1AWJUf[[bVgRiQ(rwv%u{w{yߟKdSiG.{g*mǝ`Q?o 96*bQřH<#Mx+ R,V;7 TI$bOxoT&ȴq}5TtX} =A2$JJCjT::=Ec/s30B`J RT }iQ׼lҌ#{r:msLoa6u gϷ{2n|؂nӏL2GAMR\'‡^LE&,>4aAf>>[4Y!a](DUY#lOƃ7El"6|utT,0):,j`Hv pL5( J3RX081~^P~SȴowdժȲd$K-JB\*T~|

算个广义积分被积函数: f(x)=sin(z x)sin(w x)/x积分区间:(0,+无穷)
算个广义积分
被积函数: f(x)=sin(z x)sin(w x)/x
积分区间:(0,+无穷)

算个广义积分被积函数: f(x)=sin(z x)sin(w x)/x积分区间:(0,+无穷)
不妨设z > w > 0 (z = ±w时发散,而负号容易提出),进一步可设z = aw,a>1,
则∫{0,+∞} sin(zx)sin(wx)/xdx = ∫{0,+∞} sin(awx)sin(wx)/x dx = ∫{0,+∞} sin(ax)sin(x)/x dx.
定义含参变量y的广义积分f(y) = ∫{0,+∞} e^(-xy)sin(ax)sin(x)/x dx.
交换积分与求导(应该可以验证满足某交换条件),f'(y) = -∫{0,+∞} e^(-xy)sin(ax)sin(x)dx.
这个原函数是初等函数,积分可算得-1/2·y/((a-1)²+y²)+1/2·y/((a+1)²+y²).
于是f(y) = C-1/4·ln((a-1)²+y²)+1/4·ln((a+1)²+y²).
注意到|f(y)| ≤ ∫{0,+∞} e^(-xy)dx = 1/y → 0当y → +∞,由此确定C = 0.
∫{0,+∞} sin(zx)sin(wx)/xdx = f(0) = -1/2·ln((a-1)/(a+1)) = -1/2·ln((z-w)/(z+w)).
讨论符号之后得对任意z ≠ ±w,∫{0,+∞} sin(zx)sin(wx)/xdx = -1/2·ln|(z-w)/(z+w)|.