在△ABC中,求证:S△ABC=a^2/[2(cotB+cotC)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 08:00:16
在△ABC中,求证:S△ABC=a^2/[2(cotB+cotC)]
x){:gţiXlcӋ &Gi$8i gX"}5ِiLP(183Y, ii$'jja 9 Gl I0X9 'mgM\`;󋝁-v *E(Їk+EkiCRU % {w}Ovt?dG9O7l|>Ov?f=7Yߊ?[%z6yvx֥

在△ABC中,求证:S△ABC=a^2/[2(cotB+cotC)]
在△ABC中,求证:S△ABC=a^2/[2(cotB+cotC)]

在△ABC中,求证:S△ABC=a^2/[2(cotB+cotC)]
S△ABC=1/2absinC
=1/2a^2*(b/a)*sinC
=1/2a^2*(sinB/sinA)*sinC
=1/2a^2*sinB*sinC/sinA
=1/2a^2*sinB*sinC/sin(B+C)
=1/2a^2*sinB*sinC/(sinBcosC+cosBsinC)
=1/2a^2/(sinBcosC/sinB*sinC+cosBsinC/sinB*sinC)
=1/2a^2/(cosC/sinC+cosB/sinB)
=1/2*a^2/(cotB+cotC)
=a^2/[2(cotB+cotC)]
你从下往上看就知道了这证明得推算步骤.