巳知a>0,b>0,c>0,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 09:45:42
巳知a>0,b>0,c>0,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27
x){}K t8mlzQ#1H;QPS# H1d &Hlv6٬k&l B@]FZ@}@ȓK^tBϳ۞v-x8T*y> ))d%P*İZ Hu6<ٽT#MLJ/.H̳.|y

巳知a>0,b>0,c>0,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27
巳知a>0,b>0,c>0,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27

巳知a>0,b>0,c>0,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27
(a-1)*(a-1)>=0
a^2-2*a+1>=0
两边同时加上3a
a^2+a+1>=3a
同理
b^+b+1>=3b,
c^2+c+1>=3c
所以 (a^2+a+1)(b^2+b+1)(c^2+c+1)>=3a*3b*3c=27abc