复数(1+√3i)/(√3-i)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 06:59:36
复数(1+√3i)/(√3-i)=
x){ tj?edXt$T_`gCIOvt=d v&Oji@45 `նPq.Tfm˴/.H̳̱9Il-t0cR427iXF@1T |]8[U.6FHh% EՏF6>LlNzm

复数(1+√3i)/(√3-i)=
复数(1+√3i)/(√3-i)=

复数(1+√3i)/(√3-i)=
上下乘√3+i
原式=(1+√3i)(√3+i)/(√3-i)(√3+i)
=(√3+i+3i-√3)/(3+1)
=i

=(1/2+√3/2i)/(√3/2-1/2i)
= e^(iπ/6)/e^(i2π/3)
=e^(i-π/2)
=-i

(1+√3i)/(√3-i)
=(1+√3i)(√3+i)/(√3-i)(√3+i)
=(√3+i+3i-√3)/4
=i

(1+√3i)/(√3-i)
=[1+√3i)/(√3-i)][(√3+i)/(√3+i)]
=[(1+√3i)(√3+i)]/[(√3-i)(√3+i)]
=4i/4
=i