椭圆上有两点P、Q,O为坐标原点,且有直线OP,OQ的斜率满足kop×koq=-1/2 求线段PQ中点的轨迹方程.提示:用点合法做.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:28:40
椭圆上有两点P、Q,O为坐标原点,且有直线OP,OQ的斜率满足kop×koq=-1/2 求线段PQ中点的轨迹方程.提示:用点合法做.
xTn@~mlzT=`p",AOU$pJ7BM84"Ti%*JIҤ͡{MOBgw@Jzndkgof:gx4 Gxq}\8Don^+u'W+Vf&m֑.ptȞ}̮pRՎyЍ;vD;T5U?WG6;bkyxTlq8]%i awO"ܗp/e=ry !*&o0e^ڲI1㉣ )xCwVE)y&UXsZؖm1[@b`X:#mm .H $ pmumRwn2dʽ~e6vjB Pl=Ʉ(h.^*A4<3 N:ڭk StdZ]J6 "\;õygݐnl ϥS蘐ЗBum f-~\H8gACW-OAyrvuT^

椭圆上有两点P、Q,O为坐标原点,且有直线OP,OQ的斜率满足kop×koq=-1/2 求线段PQ中点的轨迹方程.提示:用点合法做.
椭圆上有两点P、Q,O为坐标原点,且有直线OP,OQ的斜率满足kop×koq=-1/2 求线段PQ中点的轨迹方程.
提示:用点合法做.

椭圆上有两点P、Q,O为坐标原点,且有直线OP,OQ的斜率满足kop×koq=-1/2 求线段PQ中点的轨迹方程.提示:用点合法做.
设参数方程 P(Acosa,Bsina)Q(Acosb,Bsinb) Kop=Btana/A Koq=Btanb/A
B^2tanatanb/A^2=-1/2 PQ终点坐标(Acosa/2+Acosb/2,Bsina/2+Bsinb/2)x^2=A^2/4(cosa+cosb)^2 y^2=B^2/4(sina+sinb)^2

设p(x1,y1)Q(x2,y2),M(x,y)满足:
1 x1^2+2y1^2=2
2 x2^2+2y2^2=2
3 2x=x1+x2
4 2y=y1+y2
5 y1/x1*y2/x2=-1/2->2x1x2+y1y2=0
1+2式2(x1^2+x2^2)+y1^...

全部展开

设p(x1,y1)Q(x2,y2),M(x,y)满足:
1 x1^2+2y1^2=2
2 x2^2+2y2^2=2
3 2x=x1+x2
4 2y=y1+y2
5 y1/x1*y2/x2=-1/2->2x1x2+y1y2=0
1+2式2(x1^2+x2^2)+y1^2+y2^2=4变
6 2(x1+x2)^2-4x1x2+(y1+y2)^2-2y1y2=4变(由3,4,5)
2*4x^2+4y^2=4+2*(2x1x2+y1y2)-》8x^2+4y^2=4+0
所以M的轨迹为:x^2+y^2/2=1/2 也是个椭圆

收起